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Abstract 

Loneliness—defined as a subjective sense of insufficient social connection—is associated with 

substantial risks for physical and mental health problems, as well as premature mortality. Cognitive 

models propose that loneliness heightens bottom-up vigilance to social cues, functioning as an adaptive 

mechanism promoting social reconnection. However, this vigilance may lead to hypervigilance to social 

threats, fostering negative affect and biased interpretations of social environments. These reactions, in 

turn, exhaust top-down regulatory resources, potentially reinforcing negative social appraisals. Despite 

strong theoretical underpinnings, empirical support has largely been limited to self-report, with 

insufficient evidence regarding real-time social stimulus processing. 

​ To address this gap, in this thesis I examine the following hypotheses: (1) whether loneliness is 

characterized by heightened bottom-up responses to social threats—manifested as increased automatic 

attentional orienting and heightened physiological affective reactions; and (2) diminished top-down 

regulatory control during social threat processing—reflected in reduced ability to maintain goal-directed 

behavior, inhibit prepotent responses, and effectively regulate emotional reactions to socially threatening 

stimuli. To investigate these cognitive mechanisms, this thesis integrates behavioral and self-report 

methods with approaches that offer deeper insights into underlying cognitive processes, namely 

electrophysiological (EEG/ERP) and computational modeling, across three studies. Electrophysiological 

measures (EEG/ERP) enable tracking neural activity in real time, providing precise temporal insights into 

separate stages of social stimulus processing. Computational modeling, specifically the Drift Diffusion 

Model used herein, allows for estimation of latent cognitive processes underlying observable behavioral 

responses, offering nuanced insights into decision-making and attentional dynamics beyond traditional 

behavioral measures alone.​

​ To examine processes that may occur when socially salient distractors compete for attentional 

resources, in the first part of the project (Study 1; N = 52), we employed the dot-probe task, which is 

considered a gold standard in attentional bias research. Contrary to expectations, lonely individuals did 

not show increased vigilance to social stimuli during the task. This effect was consistently observed 

across standard response outcomes (response times), EEG derived markers of neural response to threat 

(n2pc), and DDM-derived indicators of perceptual engagement with threat distractors (t₀). At the same 

time,  DDM analysis of the processes related to the efficiency of the information accumulation revealed 

difficulties in perceptual decision making among lonely compared to nonlonely individuals. 

To assess whether loneliness is associated with increased affective response to social threat and 

potential difficulties in emotion regulation, Study 2 (N = 150) combined passive viewing and cognitive 

reappraisal of negative social and nonsocial images, with simultaneous EEG and electrodermal activity 

recordings. Lonely individuals showed increased P300 amplitude differences in response to negative vs 
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neutral social scenes, indicative of enhanced evaluative engagement. However, none of the ERP 

components typically associated with early attentional hypervigilance (P1, N1) or sustained affective 

processing (LPP) showed any differences between lonely and nonlonely individuals. Similarly, no group 

differences were observed in physiological arousal as indexed by skin conductance. Notably, subjective 

reports diverged from neural indices: lonely individuals rated negative scenes as less arousing and 

reported lower reappraisal success, revealing a dissociation between internal affective responses and 

conscious emotional experience, thus suggesting a possible reduction of emotional self-awareness among 

lonely individuals.​

​ Finally, given the discrepancies between the levels of analysis observed in Study 1 and Study 2, 

the final part of the project (N = 271) examined how loneliness relates to both biases and abilities in 

understanding social situations. Participants completed a broad set of tasks measuring explicit 

social-cognitive capacity (e.g., emotion recognition, mental state inference) and social-cognitive bias 

(e.g., tendency to interpret ambiguous situations negatively). Outcomes from the explicit measures were 

combined with DDM-derived indicators of decision-making efficiency and early-stage perceptual 

processing from a dot-probe task to examine the association between overt and covert markers of social 

information processing in lonely individuals. Results showed that reduced decision-making efficiency 

was associated with objective social isolation, and this relationship was mediated by lower social 

cognitive capacity. In contrast, loneliness was linked to faster early-stage processing of social 

information, but this effect was suppressed by a high level of social cognitive bias in lonely individuals 

when threatening stimuli were present. 

Taken together,  the results provide no evidence for increased social threat vigilance in loneliness, 

as none of the main neurophysiological (P1/N1, N2pc, LPP) or computational (t₀) markers of vigilance 

have shown a positive association with loneliness. At the same time, the contrasting, albeit small, effects 

were found for objective (P300) and subjective (arousal ratings) markers of social threat evaluation. 

Finally, further investigation of the covert processes associated with attentional engagement with threats 

has revealed that contrasting effects may be context-dependent and further impacted by high-level social 

cognitive biases found in lonely individuals. Similarly, despite the theoretical formulations suggesting 

decreased cognitive control in lonely individuals, we have found no specific association between 

loneliness and objective markers of decreased inhibitory control or of top-down emotion regulation of 

affective response. The key conclusion is that loneliness is linked to abnormalities in later stages of social 

information processing, particularly in interpretive and evaluative mechanisms, which lead to observed 

discrepancies between objective outcomes and self-reports in lonely individuals. By shifting focus from 

hypervigilant threat detection to biased meaning-making and reduced emotional self-awareness, the 

present thesis offers a more nuanced perspective on loneliness and suggests novel targets for intervention. 
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Streszczenie 

Samotność — definiowana jako subiektywne poczucie niewystarczających relacji społecznych — 

wiąże się ze znacznym ryzykiem problemów zdrowotnych, zarówno psychicznych, jak i somatycznych, a 

także z podwyższonym ryzykiem przedwczesnej śmierci. Modele poznawcze zakładają, że samotność 

nasila oddolną czujność wobec bodźców społecznych, co może pełnić adaptacyjną funkcję, sprzyjającą 

ponownej socjalizacji. Jednakże zwiększona czujność może prowadzić do nadreaktywnej reakcji na 

zagrożenia społeczne, nasilając negatywne emocje oraz sprzyjając tendencyjnym interpretacjom 

otoczenia społecznego. Reakcje te z kolei mogą wyczerpywać zdolność do odgórnej regulacji, co 

potencjalnie wzmacnia negatywne oceny sytuacji społecznych. Pomimo solidnych podstaw 

teoretycznych, dotychczasowe dowody opierają się głównie na danych samoopisowych, dostarczając 

ograniczonych informacji na temat przetwarzania bodźców społecznych w czasie rzeczywistym. 

Aby wypełnić tę lukę badawczą, w cyklu badawczym zweryfikowano następujące hipotezy: (1) 

czy samotność wiąże się ze zwiększonymi oddolnymi reakcjami na zagrożenia społeczne — 

przejawiającymi się w nasilonym automatycznym ukierunkowaniu uwagi oraz zwiększonych reakcjach 

afektywnych na poziomie fizjologicznym; oraz (2) czy samotność wiąże się z osłabioną odgórną kontrolą 

regulacyjną podczas przetwarzania zagrożeń społecznych — przejawiającą się w obniżonej zdolności do 

utrzymania uwagi na bierzącym zadaniu, hamowania automatycznych reakcji oraz skutecznej regulacji 

emocji w obliczu zagrożeń społecznych. W ramach trzech badań zweryfikowano hipotezy dotyczące tych 

mechanizmów, wykorzystując metody behawioralne i samoopisowe, uzupełnione o techniki 

umożliwiające szczegółową analizę dynamiki przetwarzania bodźców społecznych — 

elektroencefalografię (EEG/ERP) oraz modelowanie obliczeniowe. Pomiar EEG/ERP umożliwia 

śledzenie aktywności neuronalnej w czasie rzeczywistym i dostarcza precyzyjnych informacji o 

kolejnych etapach przetwarzania bodźców społecznych. Modelowanie obliczeniowe, w szczególności 

zastosowany tu model dryfu-dyfuzji (DDM), pozwala na estymację utajonych procesów poznawczych 

leżących u podstaw obserwowanych reakcji behawioralnych, dostarczając wglądu w procesy decyzyjne i 

uwagowe wykraczającego poza klasyczne wskaźniki behawioralne. 

W celu zbadania procesów aktywujących się w sytuacjach, gdy społeczne dystraktory konkurują 

o zasoby uwagowe, w pierwszej części projektu (Badanie 1; N = 52) zastosowano zadanie dot-probe, 

uznawane za złoty standard w badaniach selektywną uwagą. Wbrew oczekiwaniom osoby samotne nie 

wykazywały zwiększonej czujności wobec bodźców społecznych w tym zadaniu. Brak tego efektu 
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konsekwentnie odnotowano zarówno w klasycznych miarach behawioralnych (czasy reakcji), 

wskaźnikach neuronalnych EEG reakcji na bodźce zagrażające (n2pc), jak i w parametrach modelu DDM 

opisujących wczesne zaangażowanie percepcyjne w obecności dystraktorów zagrażających (t₀). 

Jednocześnie analiza DDM wykazała, że osoby samotne podejmowały decyzje percepcyjne mniej 

efektywnie niż osoby niesamotne. 

W celu zweryfikowania, czy samotność wiąże się ze zwiększoną reakcją afektywną na zagrożenia 

społeczne oraz potencjalnymi trudnościami w regulacji emocji, Badanie 2 (N = 150) łączyło pasywną 

ekspozycję oraz poznawczą reinterpretację negatywnych obrazów społecznych i niespołecznych, przy 

równoczesnym zapisie EEG oraz aktywności elektrodermalnej. U osób samotnych odnotowano większą 

różnicę amplitudy komponentu P300 między negatywnymi a neutralnymi bodźcami społecznymi, co 

wskazuje na silniejsze zaangażowanie w ocenę znaczenia bodźców. Natomiast żaden z komponentów 

ERP typowo związanych z wczesną czujnością uwagową (P1, N1) ani z utrzymującym się 

podtrzymywaniem uwagi (LPP) nie różnicował osób samotnych i niesamotnych. Podobnie, nie 

zaobserwowano różnic w pobudzeniu fizjologicznym mierzonym przewodnictwem skóry. Wystąpiła 

natomiast rozbieżność między wskaźnikami neuronalnymi a samoopisowymi: osoby samotne oceniały 

negatywne sceny społeczne jako mniej pobudzające oraz raportowały mniejszy sukces w regulacji 

emocji, co wskazuje na dysonans między fizjologiczną i świadomą reakcją emocjonalną, sugerując 

ograniczony wgląd we własne reakcje emocjonalne u osób samotnych. 

Wobec niejednoznacznych wyników uzyskanych w Badaniach 1 i 2, końcowa część projektu (N = 

271) badała relacje między samotnością a zdolnościami adekwatnej oceny i interpretacji sytuacji 

społecznych oraz tendencjami do ich negatywnego wartościowania. Uczestnicy wykonali szeroki zestaw 

zadań mierzących explicite zdolności społeczno-poznawcze (np. rozpoznawanie emocji, teoria umysłu) 

oraz tendencyjność społeczno-poznawczą (np. skłonność do negatywnej interpretacji sytuacji 

niejednoznacznych). Wyniki pomiarów explicite zestawiono ze wskaźnikami efektywności decyzyjnej 

oraz wczesnego przetwarzania percepcyjnego (DDM) uzyskanymi w zadaniu dot-probe, w celu zbadania 

relacji między jawnymi i utajonymi wskaźnikami przetwarzania informacji społecznych u osób 

samotnych. Wyniki wykazały, że obniżona efektywność decyzyjna była powiązana z obiektywną izolacją 

społeczną, przy czym związek ten był mediowany przez niższy poziom zdolności 

społeczno-poznawczych. Natomiast samotność wiązała się z szybszym wczesnym przetwarzaniem 

informacji społecznych, jednak efekt ten był tłumiony przez przeciwny wpływ nasilonej tendencyjności 

społeczno-poznawczej u osób samotnych w obecności bodźców zagrażających. 

Podsumowując, wyniki nie dostarczają dowodów na zwiększoną czujność na zagrożenia 

społeczne u osób samotnych, gdyż żaden z głównych wskaźników neurofizjologicznych (P1/N1, N2pc, 

LPP) ani obliczeniowych (t₀) nie wykazał pozytywnego związku z samotnością. Jednocześnie 
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odnotowano niewielkie, lecz przeciwstawne efekty na poziomie obiektywnych (P300) i subiektywnych 

(oceny pobudzenia) wskaźników ewaluacji zagrożeń społecznych. Dalsza analiza utajonych procesów 

przetwarzania informacji społecznych ujawniła, że efekty te mogą być zależne od kontekstu oraz 

modyfikowane przez wyższe poziomy tendencyjności społeczno-poznawczej u osób samotnych. 

Ponadto, wbrew hipotezom, nie stwierdzono specyficznych związków między samotnością a 

obiektywnymi wskaźnikami kontroli reakcji automatycznych ani efektywności regulacji emocji. 

Kluczowym wnioskiem pracy jest to, że u osób samotnych przetwarzanie informacji społecznych wiąże 

się przede wszystkim z zaburzeniami mechanizmów interpretacyjnych, a nie ze zwiększoną czujnością 

na zagrożenia społeczne, co odzwierciedlają rozbieżności pomiędzy wynikami obiektywnymi i 

samoopisowymi. Niniejsza rozprawa proponuje bardziej zniuansowaną perspektywę, przesuwając akcent 

z wczesnych procesów percepcyjnych i uwagowych w stronę tendencyjnego nadawania znaczenia 

informacjom społecznym oraz ograniczonego wglądu w przeżywane stany emocjonalne, wskazując 

jednocześnie potencjalne nowe cele interwencyjne. 

 

Słowa kluczowe: Samotność, Hiperczujność, Reakcja afektywna, Hamowanie reakcji, Regulacja emocji, 

Zdolności społeczno-poznawcze, Tendencje społeczno-poznawcze 
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Introduction 

Loneliness—also referred to as perceived social isolation (PSI)—is the subjective experience that 

one’s social relationships are insufficient or unsatisfying (Perlman & Peplau 1981). It is conceptually 

distinct from objective social isolation, which refers to the actual number or frequency of social contacts. 

Although the two constructs are moderately correlated, loneliness reflects a unique psychological 

dimension of social disconnection (Cacioppo and Cacioppo 2018a). Recent large-scale data underscore 

the growing prevalence and significance of loneliness: an EU-wide survey found that 13% of Europeans 

felt lonely “most or all of the time,” and 35% at least some of the time (Berlingieri et al. 2023). In the 

United States, the 2023 Surgeon General’s Advisory described loneliness as a public health threat 

comparable in scale to smoking or obesity (General US Surgeon, 2023). These concerns are supported by 

the epidemiological evidence linking loneliness and social isolation to substantially elevated risks for 

all-cause mortality—by as much as 30%, according to some estimates (Holt-Lunstad et al. 2015; Wang et 

al. 2023)—as well as to increased risk of depression, sleep disturbances, cognitive decline, and impaired 

immune function (General US Surgeon, 2023).  

​

Cognitive Models of Loneliness 

Given the scale and consequences of loneliness for physical and mental health, explaining the 

mechanisms through which it emerges and persists has become an important focus for psychological 

science. Cognitive models seek to uncover how loneliness shapes the perception, interpretation, and 

regulation of social information and how these cognitive mechanisms may underlie negative 

psychological and physiological effects observed in lonely individuals. 

Among the theoretical models proposed to explain how loneliness emerges and persists, the 

Evolutionary Theory of Loneliness (ETL) stands out as the most comprehensive—primarily because it 

formulates a broad set of physiological predictions, including those concerning stress reactivity, immune 

function, and cognitive performance (Cacioppo and Cacioppo 2018b). According to this framework, 

loneliness has evolved as an aversive, hunger-like state that motivates individuals to seek reconnection 

when perceived social support is lacking. Perceived social isolation is thought to increase bottom-up 

vigilance toward social cues in ways that promote reconnection (Cacioppo et al. 2014). However, since 

evolutionary pressures also favor self-preservation, this vigilance may at times become biased toward 

detecting threats, especially in ambiguous situations. As a result, loneliness may lead to a general sense 

of mistrust and social withdrawal. Moreover, ETL predicts that loneliness may impair self-regulatory 

functioning, as increased cognitive monitoring for social threats depletes resources needed for 

higher-order processes like emotion regulation or impulse control. Although ETL offers a broad 

explanatory framework, it does not clearly specify how such mechanisms manifest at the level of specific 
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cognitive operations or behavioral tasks.​

​ Extending prior theoretical accounts, Spithoven et al. (2017) applied the Social Information 

Processing model stemming from studies of aggression in children (Crick and Dodge 1994) to interpret 

the cognitive mechanisms through which loneliness may be maintained. In this view, loneliness is 

associated with a so-called negativity bias in social information processing—a tendency to interpret the 

social world in a more threatening or self-defeating way. The negativity bias has been proposed to 

operate across multiple cognitive levels, including attentional allocation, encoding, interpretation, and 

memory. Importantly, such a view is supported by self-report and vignette-based studies measuring 

tendencies for specific attributions, which relatively consistently show a negativity bias at higher levels 

of social information processing, such as negative self- and other-evaluations, pessimistic social 

attributions, and heightened expectations of rejection. However, as noted by Spithoven et al. (2017), 

evidence from studies assessing the relationship between loneliness and objective markers of perceptual, 

emotional, or regulatory processes remains limited and inconclusive. ​

​ Complementing prior theoretical frameworks, Wong et al. (2022) proposed that loneliness may 

lead to sustained up-regulation of cognitive control mechanisms in order to manage heightened 

attentional biases toward socioaffective cues. Over time, this prolonged effort could drain cognitive 

resources and contribute to affective dysregulation. This model was based on the findings from a 

meta-analysis of neuroimaging studies, which identified an association between loneliness and 

upregulation of brain regions such as the striatum, insula, and frontal areas, which are involved in 

affective and cognitive processing. Authors suggest that co-activation of such regions with networks 

implicated in top-down control may lead to overrecruitment of cognitive control systems in response to 

emotionally salient social stimuli in lonely individuals.​

​ Collectively, the reviewed theoretical accounts converge on the notion that loneliness is broadly 

associated with heightened bottom-up response to social threat, alongside disrupted top-down regulation 

of threat-related processing; these two interrelated domains form the conceptual backbone of the present 

work. The following chapters will critically review empirical findings related to bottom-up and top-down 

cognitive mechanisms in loneliness. 

 

Bottom-up response to social stimuli in loneliness.  

Bottom-up processes refer to automatic, reflexive mechanisms that are triggered directly by 

environmental cues, operating independently of current goals (Satpute and Lieberman 2006). In the 

context of social functioning, such processes are responsible for the detection of socially relevant cues 

and the initial assignment of affective significance. In loneliness research, bottom-up responses to social 

threat have been conceptualized and operationalized in diverse ways across studies. Here, I focus on 

10 

https://sciwheel.com/work/citation?ids=5670108&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5865879&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14136842&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1352857&pre=&suf=&sa=0


three partially overlapping lines of research that examine attentional vigilance to threats, generation of 

affective response to socioaffective stimuli, and effectiveness of processing of social cues.  

 

Attentional Vigilance to social stimuli 

​  Traditionally, “hypervigilance” is defined with regard to the early perceptual and attentional 

processes associated with preferential allocation of cognitive resources toward threatening stimuli 

(Richards et al. 2014). Such an approach is often utilized in the research on vigilance toward threats in 

anxiety disorders (Pergamin-Hight et al. 2015), including social threat vigilance in social anxiety. Spatial 

cueing tasks, such as the dot-probe, are commonly used to assess hypervigilance. In these tasks, faster 

responses to targets appearing in the same location as previously shown threatening stimuli (e.g angry 

face) are taken as evidence of bottom-up attentional capture. However, this approach has rarely been 

applied to loneliness. To date, only one study (Wei et al. 2020) has used a classic RT-based dot-probe task 

in this context, reporting that loneliness was associated with faster responses to sad (but not fearful) 

faces. A complementary line of research has used eye-tracking to measure gaze patterns in response to 

social threat. Some studies report that lonely individuals spend more time attending to cues related to 

social exclusion or rejection (Qualter et al. 2013; Bangee et al. 2014). However, findings are mixed: other 

studies found no consistent attentional preference for negative facial expressions or general social threat 

(Bangee and Qualter 2018; Lodder et al. 2015). 

In addition to eye-tracking, attentional responses to socially salient stimuli have also been 

examined using electroencephalography (EEG)—a technique that allows for real-time monitoring of 

neural activity and is particularly useful for identifying early-stage processing differences. In Cacioppo et 

al. (2015), 70 individuals completed a Stroop task involving negative words with social or nonsocial 

content; lonely individuals showed distinctive neural activity for social and nonsocial stimuli at the 

earlier stages of stimulus processing than nonlonely individuals. Du et al. (2022) extended these findings 

in a categorization task, reporting faster neural responses to angry faces in lonely individuals compared to 

nonsocial control images. However, none of these studies employed paradigms specifically designed to 

measure selective attention, as participants were not required to process or prioritize competing 

stimuli—a core feature of tasks commonly used to investigate attentional mechanisms in clinical 

populations, such as various forms of anxiety (Pergamin-Hight et al. 2015). 

 

Automatic affective response generation 

Another line of studies has examined bottom-up affective responses to negative social stimuli in 

loneliness. This approach has a long-standing tradition in social and affective neuroscience and typically 

involves the presentation of standardized image sets, such as the International Affective Picture System 
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(Bradley and Lang 2017), which contains emotionally evocative scenes normed for valence and arousal. 

However, stimuli used in such studies often evoke a blend of various basic emotions - most commonly 

fear, disgust, and sadness—rather than any specific type of response (e.g., threat response). In the context 

of loneliness, evidence on bottom-up affective responses comes primarily from fMRI studies. Cacioppo 

et al. (2009) reported that, among female students (n = 23), those with higher loneliness scores showed 

greater arousal to unpleasant social scenes and increased activation in the visual cortex, along with 

reduced activity in the ventral striatum and temporoparietal junction, compared to students with lower 

loneliness scores. However, in a subsequent well-powered (n=99) neuroimaging study, D’Agostino et al. 

(2019) found no differences in either self-reported affective responses or neural activation patterns 

between lonely and nonlonely participants. Similarly, Wiśniewska et al. (2025) reported nonspecific 

differences in fusiform activity between lonely and nonlonely individuals but no group differences in 

activity within core affective and social brain regions in response to negative or positive social stimuli 

between lonely and nonlonely individuals. Notably, the neural response patterns observed in lonely 

individuals do not resemble the typical profile of heightened affective reactivity found in clinical 

populations such as social anxiety disorder or major depressive disorder, where elevated subjective 

arousal elicited by social negative stimuli is accompanied by elevated amygdala and insula activation 

(Kanske and Kotz 2012; Groenewold et al. 2013; Etkin and Wager 2007). 

​

Processing of social cues 

As noted by Spithoven et al. (2017) in their SIP model of loneliness, social threat hypervigilance 

should be reflected by the increased sensitivity to specific social cues.  Thus, studies investigating 

processes associated with basic social perception and emotion recognition should document enhanced 

accuracy in detecting socially threatening cues, particularly anger or fear-related signals. In line with this 

notion, several studies suggest that lonely individuals may show heightened sensitivity in detecting and 

recognizing negative facial expressions (Lodder et al. 2016; Vanhalst et al. 2017; Di Tella et al. 2023). 

Other findings, however, indicate decreased emotion detection in lonely individuals (Morningstar et al. 

2020; Cheeta et al. 2021; Zysberg 2012). Finally, several studies found no association between loneliness 

and emotion recognition (Kanai et al. 2012; Knowles et al. 2015; Kiyak et al. 2024). Okruszek et al. 

(2021) used a comprehensive battery of tasks measuring social cognitive capacity, found no relationship 

between loneliness and lower-level social cue processing, even despite the fact that such a relationship 

was found for objective social isolation. The latter finding supports previous findings which suggest that 

objective social isolation correlates with deficits across domains of nonsocial cognitive capacity (Evans 

et al. 2019), and as such, its effects should be carefully separated from those which can actually be 

attributed to loneliness.  
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Top-Down cognitive processes during social information processing in loneliness 

Top-down processes refer to cognitive mechanisms that support the regulation of perception, 

attention, and behavior in line with internal goals (Gaspelin and Luck 2018). While often described as 

deliberate or strategic, top-down processes do not necessarily require conscious awareness. According to 

theoretical accounts of loneliness, chronic perceived social isolation may impair self-regulatory capacity, 

leading to difficulties in overriding automatic responses and adjusting behavior to situational demands 

(Cacioppo et al. 2014). Several top-down processes have been emphasized by cognitive models of 

loneliness and examined in the studies: inhibitory control, cognitive emotion regulation, and mental state 

attribution. 

 

Inhibitory Control 

Inhibitory control refers to the ability to flexibly shift attention, inhibit prepotent responses, and 

maintain goal-relevant representations in the presence of distraction (Miller and Cohen 2001). Navigating 

social environments often demands the ability to override automatic reactions or ignore irrelevant social 

cues - capacities that, in line with cognitive models, may be compromised in loneliness due to increased 

bottom-up response to threat. While a systematic review by Boss et al. (2015) concluded that loneliness 

predicts poorer executive functioning in older adults, including deficits in working memory and cognitive 

control, evidence from performance-based studies in the general population remains scarce. Two studies 

indicated reduced inhibitory control in lonely individuals. In a dichotic listening task, lonely participants 

showed reduced accuracy when instructed to attend to the non-dominant ear, suggesting weaker 

attentional control under conflicting input conditions in this group (Cacioppo et al. 2000). A subsequent 

study using an auditory Stroop task, lonely individuals were more distracted than non-lonely individuals 

by incongruent emotional prosody, particularly when processing socially relevant words (Shin and Kim 

2019). However, another two studies have reported null results with regard to the association between 

loneliness and inhibitory control: Cacioppo et al. (2015) found no group differences in response times in 

visual emotional Stroop task, and Bocincova et al. (2019) observed no association between loneliness and 

behavioral or neural measures of cognitive control in a flanker task. 

 

Cognitive Emotion Regulation 

Cognitive emotion regulation refers to the deliberate use of cognitive strategies, such as 

reappraisal or suppression, to modulate the intensity, duration, or expression of emotional responses. It 

plays a central role in adaptive functioning, enabling individuals to maintain emotional balance in the 

face of everyday challenges. Cognitive emotion regulation is closely linked to cognitive control, as it 
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requires monitoring emotions, inhibiting automatic responses, and flexibly shifting perspective to align 

behavior with goals. A recent meta-analysis by Patrichi et al. (2024), synthesizing 61 studies with over 

40,000 participants, found that lonely individuals reported greater use of maladaptive emotion regulation 

strategies such as rumination and suppression, alongside more general difficulty in regulating emotions. 

Conversely, Patrichi et. al. (2024) also reported less frequent use of adaptive strategies like reappraisal 

and distraction, and lower perceived regulatory abilities in more lonely individuals. However, although 

there is robust evidence that cognitive regulation strategies—particularly reappraisal—are reflected in 

neurophysiological markers such as the Late Positive Potential (Buhle et al. 2013), these findings are 

based exclusively on self-report measures; no studies to date have directly assessed the effectiveness of 

emotion regulation in lonely individuals using behavioral or physiological outcomes. Moreover, it 

remains unclear whether these difficulties are specific to emotionally charged social contexts or reflect 

broader impairments in emotion regulation. 

 

Mental state attribution 

Mental state attribution refers to the processes by which individuals infer others’ internal 

states—such as beliefs, intentions, desires, or emotions—based on observed behavior. On the one hand, 

mental state attribution can be understood as a capacity—that is, the general ability to accurately 

represent and reason about other people’s mental states (Roberts and Pinkham 2013). This form of 

attribution is typically assessed using neutral, third-person tasks in which participants interpret the 

intentions or emotions of unfamiliar individuals in decontextualized scenarios. In such contexts, the 

participant adopts the role of an uninvolved observer, which promotes more objective judgments. On the 

other hand, mental state attribution should also be considered with regard to specific tendencies or biases 

observed while inferring others’ intentions, mostly with regard to a self-referential tendency to interpret 

ambiguous or neutral social cues in a negative or threatening light (Roberts and Pinkham 2013). This 

interpretive dimension is typically assessed using tasks that place participants in hypothetical, personally 

salient social situations (e.g., being excluded or misunderstood) and measure the degree to which they 

infer hostile intent or negative affect in others’ actions. Multiple studies found that higher loneliness 

scores correlated with a greater propensity to attribute hostile intentions in ambiguous peer-related 

scenarios (Qualter et al. 2013; Okruszek et al. 2021; Skoko et al. 2025; Nombro et al. 2022; Lau et al. 

2021). On the other hand, De Lillo et al. (2022) found no association between loneliness and 

performance on tasks assessing theory of mind and perspective-taking in older adults after adjusting for 

age. Likewise, Okruszek et al. (2021) found no significant relationship between loneliness and the ability 

to infer mental states. Taken together, these findings suggest that loneliness may not be associated with 
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impairments in the capacity to accurately infer others’ mental states, but rather with systematic biases in 

the interpretation of such information—distortions that occur despite preserved inferential abilities.​  

 

Disentangling Bottom-Up and Top-Down Processes during social information processing 

Although the distinction between bottom-up and top-down processes is conceptually 

useful—referring broadly to reflexive versus goal-directed mechanisms—it is not a strict or mutually 

exclusive dichotomy. As such, the division should be understood as a heuristic framework rather than a 

literal separation of underlying systems, which usually show a high level of interdependence and 

interrelatedness and have a continuous rather than dichotomous nature. Within this framework, we map 

specific cognitive operations onto the bottom-up or top-down dimension based on their primary drivers 

(e.g., external input vs. internal goals), while acknowledging that many processes involve elements of 

both. However, even when adopting this heuristic framework, empirically separating the two types of 

processes remains problematic, as they often operate in parallel and continuously interact. For example, 

seeing an angry facial expression automatically triggers bottom-up processing, such as rapid orienting 

and physiological arousal. The speed and nature of the behavioral response will partly depend on the 

intensity of this initial reaction. At the same time, reaction is also shaped by top-down processes such as 

expectations, current goals, or the ability to inhibit or reinterpret the initial impulse—making it difficult 

to separate the relative contribution of each component based on behavioral responses alone 

(Schweinberger and Neumann 2016; McMains and Kastner 2011). Two methodological approaches may 

be particularly useful in disentangling this dynamic, i.e. use of EEG event-related potentials (ERPs), 

which allows for a fine-grained analysis of the temporal unfolding of neural processes, and 

computational modelling of overt behavioral responses, which can decompose observed behavior into 

latent cognitive components. Each of these approaches is discussed in the sections below. 

 

EEG Event Related Potentials 

EEG, and in particular event-related potentials (ERPs), offer a valuable methodological approach 

for disentangling the temporal dynamics of cognitive processing. Unlike behavioral measures such as 

reaction time, decision accuracy, or ratings, which typically yield a single data point per trial, 

event-related potentials (ERPs) allow researchers to track neural activity in real time and map it onto 

different cognitive processes as they unfold during stimulus processing. These markers include early 

components related to sensory encoding (e.g., P1, N1) and attentional selection (e.g., N2pc), as well as 

activity observed during the later stages of the stimuli processing, which may be linked to initial 

cognitive evaluation (e.g., P3) or attention maintenance (Late Positive Potential [LPP]). The LPP, in 

particular, has received considerable attention in affective science, where it is conceptualized as a neural 
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index of stimulus significance, reflecting the sustained engagement of motivational systems and the 

ongoing allocation of attentional resources toward emotionally salient information (Hajcak and Foti 

2020). Moreover, the LPP exhibits excellent psychometric properties, including high internal consistency 

and stability, even when derived from a relatively small number of trials (Moran et al. 2013). Numerous 

studies have employed ERP methodology to characterize stage-specific differences in information 

processing across both general and clinical populations (Hajcak et al. 2010; Lu et al. 2025; Donoghue 

and Voytek 2022). Figure 1 illustrates the temporal cascade of ERP components commonly observed in 

studies of attentional bias, highlighting group differences at both early and late processing stages. This 

temporal dissociation is central to distinguishing bottom-up automatic mechanisms from later evaluative 

or regulatory processes, and makes ERPs a particularly valuable tool in research on social-affective 

functioning. 

​
Figure 1. Illustrative model of the temporal dynamics of threat-related attentional bias, adapted from the Neural Chronometry Model 

(adapted from: Gupta et al. 2019). Attentional bias toward threatening or emotionally salient stimuli may manifest through distinct temporal 

stages. Early ERP components (P1, N1, P2, N2) reflect rapid, automatic, and largely preconscious orienting to salient cues, often linked to 

heightened vigilance. In contrast, later components (P300 and LPP) are associated with evaluative or controlled processes, such as sustained 

engagement or difficulty disengaging from emotional stimuli.​

 

Computational Modeling 

Another approach to disentangle bottom-up and top-down processes involves fitting formal 

cognitive models to behavioral data. A widely used example is the Drift Diffusion Model (DDM; Ratcliff 

and McKoon 2008), which models binary decisions as the accumulation of noisy evidence over time until 

a decision threshold is reached. Importantly, DDM decomposes total response time into decision-related 

and nondecision components—separating the decision process from peripheral stages related to 

non-decision processes like sensory encoding and motor execution. In its most basic form, the model 

dissociates the parameter associated with the speed and quality of evidence accumulation (drift rate - v), 

from the pre- and post-decisional processes not directly associated with evidence accumulation, e.g., 
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impact of the perceptual processing of threat distractors on decision process (nondecision time - t₀). As 

presented in Figure 2, DDM provides insight into the latent cognitive mechanisms underlying task 

performance. Notably, t₀ has been linked to early attentional processing, including functional connectivity 

in control and attentional networks (Price et al. 2019) and N2 ERP latency (Nunez et al. 2017; Nunez et 

al. 2019), supporting its interpretation as an index of early-stage attentional bias. In contrast, drift rate is 

considered a robust indicator of task engagement and the quality of perceptual decision-making (Voss et 

al. 2004), making it a suitable candidate for quantifying top-down control processes.​

​
Figure 2. This figure provides a simplified illustration of the Drift Diffusion Model, which describes binary forced-choice decisions as a 

process of evidence accumulation over time. In each trial, the decision process begins after a non-decision time t₀ (grey vertical line), during 

which no decision-related computation and motor response occur. From a starting point (z), evidence (blue trajectory) accumulates with a 

mean rate determined by the drift rate (v) until it reaches one of two decision boundaries (dashed lines), corresponding to alternative 

responses. The starting point reflects an a priori bias toward one of the decisions, while the distance between the boundaries is determined 

by the threshold parameter (a), which reflects the amount of evidence required to make a decision; higher values imply more cautious 

decision-making. Repeating this process across trials yields reaction time distributions for upper (green) and lower (red) decisions. 

Research goals and hypotheses 

Current conceptualizations suggest that loneliness may influence both bottom-up and top-down 

processes observed in response to social stimuli. While existing studies have examined this possibility, 

the available evidence is highly heterogeneous, differing widely in methodological design, measurement 

approaches, and analytic focus. Many studies assess distinct stages or components of processing in 

isolation, making it difficult to determine which specific mechanisms are most reliably associated with 

loneliness. 

To address this gap, the present research program investigates how loneliness relates to both 

bottom-up and top-down processes in social information processing. This is achieved through a 

multi-level approach encompassing self-report, behavioral performance, neurophysiological measures 

(EEG), and computational modeling. Rather than focusing on isolated trajectories, the aim is to 
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characterize the functional profile of social information processing in lonely individuals across multiple 

levels of analysis. The core research questions guiding this investigation are outlined below. 

​

RQ1: Is loneliness linked to enhanced bottom-up attentional vigilance to socially threatening 

distractors during a perceptual decision-making task?​

Although prior research tentatively suggests heightened attentional vigilance in loneliness, no studies 

have directly examined selective attention to social threats. Tasks that require participants to make 

speeded judgments while ignoring irrelevant information offer a way to test whether socially threatening 

cues automatically capture attention. I predict that higher levels of loneliness will be associated with 

stronger attentional capture by social threat cues, as reflected by: (H1a) faster response times, (H1b) 

enhanced N2pc amplitudes, and (H1c) shorter Drift Diffusion Model-derived nondecision times (t₀) in the 

dot-probe task. 

​

RQ2: Is loneliness linked to decreased inhibitory control in a perceptual decision-making task 

elicited by social distractors?​

Successfully maintaining focus on the task in complex contexts depends on the ability to suppress 

interference and flexibly allocate attention. Thus, increased attentional vigilance to social threats may 

also interfere with cognitive control during perceptual decision making, particularly under cognitively 

demanding circumstances (e.g., when the task demands implementation of inhibitory control). I predict 

that higher levels of loneliness will be associated with decreased ability to implement inhibitory control, 

as indicated by (H2a) longer reaction times and (H2b) lower drift rates (v) during the inhibitory trials of 

the dot-probe task. 

​

RQ3: Is loneliness linked to bottom-up affective response to socially negative stimuli?​

Unlike attention tasks, in which threat-related stimuli are peripheral, tasks involving passive viewing of 

emotionally negative images require participants to focus directly on the presented socioaffective content. 

This approach allows for the direct assessment of bottom-up responses to such input at both the 

subjective and physiological levels. I predict that higher levels of loneliness will be associated with 

stronger subjective arousal and more negative valence ratings (H3a), as well as increased early (P1, N1, 

EPN; H3b) and middle-stage (P3, H3c) and late, sustained (LPP, H3d) ERP components in response to 

negative versus neutral social images. 

​

RQ4: Is loneliness linked to the ability to regulate emotional responses to socially negative stimuli?​

Prior self-report studies indicate that lonely individuals report greater difficulties in emotion regulation. 
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Experimental paradigms requiring participants to reappraise negative stimuli offer a way to assess 

regulatory ability beyond self-report. Previous studies have reliably shown that implementation of the 

top-down emotion regulation strategies decreases subjective arousal ratings and decreases LPP in 

response to affective stimuli (Kennedy and Montreuil 2020; Hajcak et al. 2010; Thiruchselvam et al. 

2011). I predict that loneliness will be linked to decreased impact of cognitive reappraisal on affective 

response to negative social stimuli, as reflected by the smaller change in arousal and valence ratings 

following reappraisal (H4a), as well as reduced downregulation of P300 and LPP amplitudes in response 

to reappraised social negative images (H4b) in more lonely individuals.  

RQ5: Is increased attentional vigilance to socially salient information linked to social cognitive bias 

in lonely individuals?​

Lonely individuals are often thought to interpret ambiguous social cues in an overly negative or 

self-referential way. However, it remains unclear whether such bias is linked to early-stage processing of 

socially relevant input. While prior research has demonstrated the presence of both low level perceptual 

and high level interpretative biases, the association between these two levels of biased processing 

remains poorly understood. According to cognitive models of loneliness, attentional vigilance to social 

threats should foster the development of interpretative biases by increasing the salience of negative social 

information. I predict (H5) that the association between loneliness and early-stage processing speed (t₀) 

in response to social stimuli will be mediated by social cognitive bias. 

RQ6: Is inhibitory control of responses to socially salient information linked to social cognitive 

capacity in lonely individuals?​

While loneliness is frequently associated with distorted interpretations of social information, evidence 

regarding its link to actual social-cognitive abilities remains mixed. Prior research suggests that reduced 

detection of social cues is associated with objective—but not perceived—social isolation (Okruszek et 

al., 2021). This raises the question of whether the ability to sustain task engagement in socially 

distracting contexts reflects differences in social-cognitive capacity—and whether this, in turn, is 

uniquely linked to loneliness. I predict (H6) that the association between loneliness and top-down 

responses (v) to social stimuli will be mediated by social cognitive capacity. 

Methods and Results 

The empirical core of this dissertation comprises three studies, two of which have been published 

in peer-reviewed journals and one currently under review and available as a preprint. The target 

population in all three studies consisted of young adults aged 18–35. This age group was selected for two 

key reasons. First, most of the existing research on loneliness has focused on adolescents and older 
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adults, leaving young adulthood comparatively underexplored. Secondly, socioaffective functioning is 

shaped by developmental and neurobiological processes that differ across life stages. In adolescence, 

many regulatory and affective systems are still maturing, while in older age, cognitive and physiological 

decline may confound the effects of loneliness. Thus, studying young adults, who are beyond major 

developmental transitions but not yet affected by age-related changes, offers a unique opportunity to 

examine the impact of loneliness on cognition and emotion without developmental or degenerative 

confounds. Below is a summary of each part of the cycle.​

 

Examining Vigilance to Social Threats in the Context of Perceptual Decision-Making 

 

Introduction: Selective attentional vigilance to threat-related cues has been extensively studied in social 

anxiety, where it is often assessed using the dot-probe task. The aim of the first study was to apply this 

well-established approach to investigate whether similar patterns of increased selective attention to social 

threat emerge in lonely individuals (RQ1). To further examine how socially threatening distractors affect 

task performance under increased cognitive demand, the task was modified to include trials requiring 

inhibitory control (RQ2). At the same time, recognizing growing concerns about the limited 

psychometric validity of conventional behavioral indices derived from the dot-probe task, we 

incorporated two additional methods to strengthen the inference: EEG and computational modeling. 

Methods: This study was conducted as part of a project funded by the National Science Centre, Poland 

(Grant No: 2019/35/B/HS6/00517, Principal Investigator: Łukasz Okruszek). Fifty-two right-handed 

adults aged 18–35 were recruited and divided into high-lonely and low-lonely groups (n = 26 per group) 

based on scoring in the top or bottom quartile of the Revised UCLA Loneliness Scale (R-UCLA). 

Participants completed a modified version of the dot-probe task using facial stimuli while EEG was 

recorded. Each trial began with the lateral presentation of a face pair (angry–neutral or neutral–neutral), 

followed by a target stimulus (a horizontal or vertical colon) appearing in the location of one of the faces. 

Participants were instructed to respond to the orientation of the target via keypress. The task included two 

independent manipulations: firstly,  the target appeared either in the same location as the angry face 

(congruent), on the opposite side (incongruent), or followed the presentation of two neutral faces 

(baseline). This way, the congruence between the spatial positions of the angry faces and the target was 

manipulated to examine attentional bias toward threat. At short stimulus onset asynchronies (typically 

below 300 ms), faster responses are observed in the congruent condition. Secondly, the inhibitory 

condition manipulated the spatial compatibility of the response: the keypress (e.g., right) either matched 

the target’s on-screen location (right) or was incongruent with it (left), thereby introducing the need to 
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inhibit a prepotent response, which typically results in longer response time. Details of the computational 

modelling, EEG preprocessing and ERP extraction are discussed in (Mąka et al. 2023). 

Results: Contrary to our hypothesis (H1a), lonely individuals did not exhibit faster reaction times to 

targets appearing in the location of threatening stimuli. Further investigation revealed no differences 

measured by nondecision time (H1b) or N2pc amplitude (H1c). No evidence for increased selective 

attention in lonely individuals was found at any level of analysis. In contrast, although no overt 

differences in behavioral performance were observed (H2a), lonely individuals showed significantly 

lower drift rates (v) across all conditions (not only inhibitory trials), indicating a nonspecific reduction in 

decision-making efficiency. Exploratory analyses further revealed decreased drift rate variability (sv) in 

lonely participants, suggesting that the accumulation of evidence was also less stable across trials. As 

these effects were not confined to high-demand (inhibitory) trials, the pattern is broadly consistent with 

H2b, though it points to a more general performance decrement. Importantly, these effects were observed 

exclusively through the use of computational modeling and were not detectable using standard measures 

of task performance. 

Discussion: The observed decrease in performance among lonely individuals appears nonspecific, as it 

was not modulated by task conditions designed to vary attentional and inhibitory demands. This suggests 

that the effect is not driven by increased inhibitory demand, as hypothesized. Instead, it may reflect 

reduced top-down maintenance of task goals in the presence of social distractors—even when the need 

for cognitive control is low. Due to the absence of a control condition involving nonsocial stimuli, the 

current design does not allow us to determine whether the observed effect is specific to social distraction 

or reflects a domain-general deficit. Nevertheless, these findings underscore the importance of going 

beyond surface-level metrics when investigating the cognitive consequences of loneliness. 

 

Examining Responses to Socioaffective Stimuli During Automatic Processing and Top-Down 

Cognitive Reappraisal  

 

Introduction: Study 2 examined whether loneliness is associated with increased bottom-up processing 

when participants directly view and evaluate emotionally salient stimuli (RQ3). Compared to Study 1, 

which presented social stimuli as distractors, this design allowed for a more explicit assessment of 

affective reactivity by placing emotionally negative stimuli at the center of attention. In addition, Study 2 

aimed to test whether loneliness is linked to diminished emotion regulation ability—an association 

widely reported in self-report studies, but not previously tested using experimental paradigms (RQ4). 

Given that the lack of nonsocial stimuli was a substantial limitation of Study 1, both social and nonsocial 
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emotional images were included, enabling assessment of whether the observed effects are specific to the 

social domain or reflect broader affective differences. 

Methods: This study was conducted as part of a project funded by the National Science Centre, Poland 

(Grant No: 2019/35/B/HS6/00517, PI: Łukasz Okruszek). One hundred fifty right-handed adults (aged 

18–35) were recruited using quota sampling to ensure full coverage of the UCLA-R loneliness score 

distribution. The study consisted of two experimental sessions. In the first session, participants completed 

a Set-Shifting Task as a measure of cognitive control, included to test whether potential difficulties in 

emotion regulation among lonely individuals might stem from reduced top-down control, as suggested by 

findings from Study 1. During the second session, participants performed the tasks during which they 

viewed emotionally negative and neutral images, either social or nonsocial in content, while their EEG  

and Electrodermal Activity (EDA) were recorded. Participants were instructed to either passively watch 

or to decrease their affective response to pictures via cognitive reappraisal. After each trial, participants 

were asked to provide the arousal and valence ratings for the picture.  To control for potential confounds, 

participants also completed questionnaires assessing depressive symptoms and social anxiety, which 

frequently co-occur with loneliness and are known to modulate affective responding.​

Results: Hypothesis H3a, predicting increased subjective emotional reactivity in lonely individuals, was 

not supported: actually, more lonely participants reported decreased arousal difference between negative 

and neutral social images, indicating, contrary to our predictions, a reduction in reported affective 

intensity in lonely individuals. H3b and H3d, concerning early and late stage neural responses, was 

likewise not supported, as no association between loneliness and early ERP (P1/N1/EPN) or late (LPP)  

components was observed. In contrast, H3c was supported: higher loneliness was associated with greater 

P300 amplitude differences between negative and neutral social images during passive viewing (r = 

0.19). This pattern indicates a dissociation between neural activation and subjective emotional experience 

in lonely individuals. Regarding reappraisal efficiency, differences in arousal ratings between reappraisal 

and passive viewing conditions showed that lonely individuals experienced smaller reductions in arousal 

following reappraisal of social negative stimuli, suggesting diminished regulatory success at the 

subjective level, consistent with H4a. However, no corresponding differences were observed in 

physiological markers, including EEG or skin conductance measures (H4b). Finally, exploratory analyses 

revealed no association between cognitive control (Set-Shifting Task) and loneliness. Moreover, further 

investigation of potential confounding effects revealed that controlling for social anxiety actually 

strengthened both neural and subjective associations with loneliness during passive viewing of negative 

vs neutral social images. The association between loneliness and enhanced P300 amplitudes increased to 

β = 0.36, exceeding typical effect sizes reported in personality neuroscience (average r ≈ .17; Mar et al., 

2013). A similar, although more modest, strengthening of the association was also observed for 
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self-reported arousal ratings, where the correlation became more negative after controlling for social 

anxiety. 

 

 

Discussion: In contrast to predictions derived from the cognitive model of loneliness, the study did not 

reveal consistent evidence for heightened bottom-up affective responses to social threat. The only 

observed effect was specific to the P300 time window, suggesting that loneliness may amplify initial 

evaluative processing of emotionally salient social information without affecting later, sustained 

elaboration. Similarly, no objective impairments in emotion regulation were observed at the physiological 

level, as indicated by both electrophysiological and autonomic (skin conductance) markers during 

cognitive reappraisal. However, the most striking finding from this study lies in the dissociation between 

neural and subjective responses: lonely individuals reported blunted arousal to negative social stimuli and 

lower regulation success, yet these subjective reports did not align with their neural activation patterns. 

This discrepancy may point to reduced affective self-insight in loneliness—that is, a mismatch between 

internal emotional reactivity and consciously accessible experience.  

 

Examining the Association Between Covert Markers of Social Information Processing and Overt 

Social Cognitive Capacity and Bias 

 

Introduction: Loneliness has been linked to an increased tendency to interpret ambiguous social cues 

negatively. However, it has also been hypothesized that loneliness may alter the capacity to process 

socially relevant information. Prior findings on this issue have been mixed. Results from Study 1 and 

Study 2 echo this ambiguity. While Study 1 revealed reduced decision-making efficiency in lonely 

individuals, Study 2 found no objective impairments in emotion regulation or cognitive control, despite 

self-reported difficulties, suggesting possible distortions in self-perception rather than deficits in 

processing capacity per se. Discrepancies between subjective and objective responses to socioaffective 

stimuli observed in Study 2 have been further explored in the final part of the project, which investigated 

the association between loneliness and overt and covert social cognitive mechanisms. Therefore, to 

clarify these ambiguities, the final part of the project tested whether previously observed bottom-up and 

top-down differences in social threat processing linked to loneliness are differentially linked to distinct 

overt cognitive mechanisms: specifically, whether increased sensitivity to social threat is linked to social 

cognitive bias (RQ5), and whether difficulties in sustaining task engagement amid social distraction are 

linked to the reduced social-cognitive capacity (RQ6). 
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Methods: Study 3 was conducted as part of two research projects supported by the National Science 

Centre, Poland (Grant Nos: 2018/31/B/HS6/02848 and 2019/35/B/HS6/00517, PI: Łukasz Okruszek). 

Data from the  271 adults aged 18–35 collected during the behavioral assessment part of each project 

were pooled for the analysis. Each participant completed scales measuring loneliness (Revised UCLA 

Loneliness Scale) and objective social isolation (Lubben Social Network Scale) as well as a 

comprehensive battery of tasks capturing facial emotion recognition, sensitivity to social cues, and the 

ability to infer mental states (Pinkham et al. 2018). Furthermore, social cognitive bias was assessed using 

self-report questionnaires and vignettes probing for hostile attributions in ambiguous interpersonal 

scenarios. Finally, participants also completed a dot-probe task with a design nearly identical to that used 

in Study 1, except for one key modification: trials involving neutral-neutral and neutral-angry face pairs 

were presented in separate blocks. In the first block, only neutral-neutral pairs were shown, followed by a 

block consisting exclusively of neutral-angry trials. Structural equation models were used to replicate and 

extend the model proposed by Okruszek et al. (2021) by testing whether dot-probe-derived DDM 

parameters (v, t₀) predict perceived and objective social isolation, with these associations mediated by 

social cognitive bias and social cognitive capacity. Separate models were estimated for baseline (neutral 

faces) and threat (angry and neutral faces) conditions of the dot-probe task to capture condition-specific 

effects.  

Results: We conceptually replicated the findings of Okruszek et al. (2021): social cognitive bias was 

associated with both perceived and objective social isolation, whereas social cognitive capacity was 

linked specifically to objective—but not perceived—isolation. The pattern of the observed results was 

more complicated than the one predicted by the H5. Firstly, nondecision time was negatively related to 

perceived loneliness under both baseline and threat conditions. Secondly, nondecision time was not 

associated with social-cognitive bias under baseline conditions; however, in the threat condition, a 

significant positive association emerged, indicating that higher levels of bias were linked to prolonged 

early-stage processing in response to social threat. In this condition, nondecision time also indirectly 

positively predicted higher perceived loneliness through its association with social-cognitive bias (H5 

supported). However, this pattern reflects a suppression effect, as the direct and indirect paths linking 

nondecision time to loneliness had opposite signs. At the same time, drift rate was positively associated 

with social cognitive capacity and indirectly predicted lower levels of objective, but not perceived, 

isolation (H6 not supported). Additionally, in the baseline condition, drift rate was negatively associated 

with social-cognitive bias; however, no indirect effect on loneliness was observed.​

Discussion: The results of the study support the notion that distinct cognitive mechanisms may underlie 

different pathways through which social cognitive bias is formed, which may have important 

implications for loneliness research. Specifically, two complementary routes linking covert social 
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information processing mechanisms and social cognitive bias were found: in neutral contexts, social 

cognitive bias was primarily linked to reduced information processing capacity, suggesting that 

interpretive distortions can emerge even in the absence of overt threat, potentially due to limited 

cognitive resources. In contrast, when socially threatening cues were present, social cognitive bias 

became more strongly associated with prolonged early perceptual processing, indicating a heightened 

engagement with socially threatening stimuli. In the context of loneliness, this pattern becomes 

particularly relevant. Lonely individuals consistently have faster early-stage processing, regardless of 

whether social threat cues were present. This may reflect a generally facilitated social stimulus 

processing. However, when threatening social cues are involved, this effect appears to be attenuated by 

social cognitive bias. In individuals prone to interpreting ambiguous social cues as hostile, often those 

with higher loneliness, early processing of social threat was slower, cancelling out the facilitation effects 

associated with loneliness. 

General Discussion 

The aim of this research cycle was to empirically test whether perceived social isolation is 

associated with heightened bottom-up responses to social threat—reflected in attentional vigilance (RQ1) 

and affective reactivity (RQ3)—and with reduced top-down regulation of threat-related processing, 

reflected in inhibitory control (RQ2) and emotion regulation (RQ4). In addition, the research examined 

the pathways linking early-stage processing and regulatory mechanisms to social cognitive bias (RQ5) 

and social cognitive capacity (RQ6) in loneliness. The overall pattern of findings supports three key 

conclusions regarding information processing in loneliness.​

​ First, the results do not support the notion that loneliness is associated with generalized 

hypervigilance or increased affective responses to socially threatening stimuli.  Despite employing a wide 

range of complementary measures—including explicit behavioral indices (reaction times), neural 

markers of attentional orienting (N2pc), and latent decision processes captured through computational 

modeling—Study 1 provided no evidence for heightened vigilance to social threat among lonely 

individuals at any level of analysis. In Study 2, no evidence for elevated neural markers of early 

perceptual (P1, N1) or late-stage processing (LPP) was found, providing no support for heightened 

attentional vigilance or sustained emotional engagement with negative social stimuli among lonely 

individuals. Likewise, physiological measures (skin conductance) and self-reported affective responses 

revealed no indication of increased emotional reactivity—in fact, lonely participants reported lower 

subjective arousal to negative images. The only supported hypothesis was an enhanced P300 amplitude 

observed in lonely individuals during passive viewing of negative social stimuli. In the context of 

consistently null effects across other indices, this isolated P300 enhancement is probably best interpreted 
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as reflecting a specific alteration in evaluative engagement rather than increased bottom-up affective 

response. In Study 3, loneliness was not associated with increased sensitivity to social cues, such as the 

ability to recognize emotions or detect social signals. However, loneliness was linked to alterations in 

early-stage processing of social stimuli, reflected in shorter nondecision times. This facilitated early-stage 

processing could initially suggest some form of heightened vigilance. Interestingly, the cognitive model 

of loneliness (Cacioppo et al. 2014) proposes that such increased vigilance should subsequently promote 

biased interpretations of social stimuli. Yet, our results showed an opposite pattern: when socially 

threatening stimuli were present, higher social cognitive bias was associated with prolonged, rather than 

shortened, early-stage processing. Thus, although loneliness itself was related to faster initial engagement 

with social stimuli, the presence of interpretive biases when the threat stimuli were actually presented 

appeared to slow down these initial processing benefits in lonely individuals. This suggests that 

loneliness may involve a specific alteration in early-stage processing, but this alteration does not appear 

to drive or facilitate the development of negatively biased interpretations at later stages, as proposed by 

cognitive models of loneliness. Taken together, the findings presented in this thesis suggest that the 

commonly reported associations between loneliness and negative affective experiences in social 

situations (Blandl and Eisenberger 2025) do not originate from heightened bottom-up responsivity to 

social threat, but rather point to the involvement of processes operating at later stages of social 

information processing. 

The second main conclusion emerging from this thesis is that loneliness is primarily associated 

with biased social information processing, particularly in domains related to interpretation, evaluation, 

and self-referential judgment, rather than objective decreases in complex abilities associated with 

cognitive control, emotion regulation or mental state inference. In line with H2, we expected to find an 

association between loneliness and diminished inhibitory control. Study 1 showed that lower drift rates in 

lonely individuals could be interpreted as reflecting less efficient maintenance of task-relevant 

information in the presence of distractors, potentially implicating compromised inhibitory control. 

However, in Study 2, no relationship was observed between loneliness and performance on a set-shifting 

task, a behavioral measure of inhibitory control. Furthermore, the results of the Study 3, which has 

utilized a more complex approach towards modelling of the effects linking drift rate with loneliness while 

concurrently accounting for the effects of social cognitive capacity, social cognitive bias and objective 

social isolation has shown no association between drift rates observed during the task and loneliness 

levels in a large group of participants. Similarly, even though more lonely participants showed decreased 

impact of cognitive reappraisal use on arousal ratings of the stimuli and declared less frequent use of 

adaptive strategies in their daily life across self-report measures in Study 2, they did not exhibit 

decreased ability to utilize cognitive reappraisal to downregulate their physiological response to affective 
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stimuli, as indicated by ERP and skin conductance findings.  The divergence between objective and 

subjective indices is consistent with the distinction between emotion regulation ability and emotion 

regulation tendencies or habits, frequently emphasized in the literature (Andrews et al. 2023; Oriyama et 

al. 2025). Our findings suggest that although lonely individuals are capable of regulating emotions when 

prompted, they habitually rely on less adaptive strategies and perceive themselves as less effective 

emotion regulators. A similar dissociation emerged in Study 3 with respect to social cognition. While 

more lonely individuals did not display reduced social cognitive capacity, whether in processing social 

cues or attributing mental states, a robust association between loneliness and biased processing of social 

information was observed. Previous studies have shown that loneliness is consistently linked to lower 

self-assessed social abilities and reduced perceived social competence (Heinrich and Gullone 2006; 

Lodder et al. 2016; Sharp et al. 2016; Tsai and Reis 2009), yet the present findings suggest that such 

negative self-evaluations do not correspond to actual impairments in social cognitive capacity. Taken 

together, the findings from all studies in this thesis indicate that loneliness is not primarily characterized 

by deficits in social cognitive or regulatory capacity, but rather by negatively biased interpretation of 

social information and negative evaluation of one’s own social abilities, which may serve as key 

mechanisms for maintaining the experience of loneliness over time.​

​ The third, more tentative conclusion emerging from the research cycle is that loneliness may be 

linked to reduced introspective accuracy, the ability to assess one's own mental and emotional states. In 

Study 2, lonely participants reported blunted arousal responses to negative versus neutral social images 

during passive viewing and showed less reduction in arousal ratings during cognitive reappraisal. 

However, this subjective pattern was not reflected in neural measures, as no corresponding effects were 

observed in Late Positive Potential amplitudes, which are typically associated with emotional arousal. 

While none of the studies presented in this thesis were specifically designed to study introspective 

awareness, several lines of indirect evidence from previous research lend support to this possibility. 

Loneliness has been linked to elevated levels of alexithymia—a trait marked by difficulties identifying 

and describing internal emotional states, which may reflect broader deficits in introspective access 

(Qualter et al. 2009; Conti et al. 2023; Zhang et al. 2023). Supporting this, Lodder et al. (2016) showed 

that adolescents who exhibited greater discrepancies, regardless of direction, between their 

self-evaluations and peer assessments of social competence were more likely to report loneliness, 

suggesting that loneliness may reflect inaccurate self-perceptions. Relatedly, Durlik and Tsakiris (2015) 

found that even brief social exclusion, a state conceptually related to loneliness, disrupted introspective 

access to internal bodily signals, as measured by a heartbeat perception task. Finally, neuroimaging data 

from Golde et al. (2019) revealed that lonelier adolescents exhibited reduced activation in the 

ventromedial prefrontal cortex—a region broadly implicated in subjective valuation of self-relevant and 
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social information—when evaluating themselves, but not when judging others. While necessarily 

speculative due to the limitations of reverse inference, this neural pattern may reflect reduced 

introspective accuracy. Accurately evaluating internal emotional signals is crucial for effective social 

functioning, as it allows individuals to monitor their own emotional states, adjust their behavior in social 

interactions, and form realistic appraisals of social situations; difficulties in introspective accuracy may 

therefore constitute an additional cognitive mechanism contributing to the maintenance of loneliness. 

 

Conclusion  

The notion that loneliness is broadly characterized by heightened vigilance to social threat has 

become central in theoretical models since it was first introduced by Cacioppo and colleagues as part of 

the Evolutionary Theory of Loneliness (Cacioppo and Hawkley 2009). This perspective has subsequently 

been reproduced across both academic and popular science literature (e.g., Hertz 2020; Murthy 2020), 

and at some point has been accepted as a core feature of loneliness. However, the empirical foundation 

for this view is both limited and indirect. Because the association between loneliness and social 

information processing was not extensively studied in the past, Cacioppo and coauthors often relied on 

indirect evidence. E.g., Yamada and Decety (2009) have found that individuals scoring higher on the 

Fantasy subscale of the Interpersonal Reactivity Index show increased sensitivity to painful facial 

expressions. They also noted that “According to Davis’s original study [7], the fantasy scale was 

associated with shyness, loneliness, and social anxiety.” (p.75), thus they conclude that similar effects 

may possibly be found in individuals with higher dispositional levels in shyness, loneliness, and social 

anxiety. At the same time, Cacioppo and coauthors cite these results as support for the notion of the 

increased sensitiveness to the presence of pain in dislikable faces in lonely compared to nonlonely 

individuals in at least 11 different reviews and theoretical conceptualizations (e.g., Cacioppo et al. 2015; 

Cacioppo et al. 2014; Cacioppo et al. 2011; Cacioppo and Hawkley 2009). Another example is provided 

by resting-state connectivity studies, which heavily rely on reverse inference. For example, Layden et al. 

(2017) reported increased intrinsic connectivity in the right central operculum and right supramarginal 

gyrus in individuals with higher loneliness scores. Although interpreted as reflecting tonic alertness, 

these regions serve diverse, likely more fundamental functions, and the study could not determine the 

specific processes involved, rendering this interpretation largely speculative. In contrast, findings 

presented in this thesis — obtained using tasks specifically designed to measure bottom-up processes — 

do not support the idea that loneliness is associated with a broadly heightened bottom-up response to 

social threat. Instead, the present work proposes a shift in theoretical focus from hypervigilance to social 

threats toward interpretive and self-referential mechanisms as central features of the psychological profile 

of loneliness. 
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​

Limitations and Further Directions 

The empirical work included in this dissertation is entirely cross-sectional, which limits 

conclusions about the temporal dynamics through which chronic loneliness may affect cognition. 

Although short-term studies report high test–retest reliability of the UCLA Loneliness Scale (Maes et al. 

2022), Mund et al. (2020) found that one-year stability of loneliness is lowest in young adulthood, the life 

stage examined here. While based on only two longitudinal cohorts, this estimate plausibly reflects the 

volatility of this period, marked by transitions such as relocation, relationship formation, and entry into 

the labor market, all of which may recalibrate perceived social connectedness. Because some cognitive 

and neurophysiological effects may arise only after sustained social disconnection, the cross-sectional 

design cannot establish whether the observed differences reflect long-term consequences of chronic 

loneliness or short-term fluctuations. Furthermore, including both transiently and chronically lonely 

individuals may dilute effects specific to prolonged loneliness, making them harder to detect. Future 

research should therefore employ multi-wave longitudinal designs spanning at least 6–12 months to 

distinguish the cognitive and neurophysiological impact of transient and persistent loneliness. 

An additional limitation of the present research program lies in the application of a broad set of 

tasks designed to assess multiple aspects of social information processing. On the one hand, this 

multi-method approach allows for a more comprehensive investigation of different cognitive mechanisms 

potentially implicated in loneliness. On the other hand, the diversity of tasks, each employing different 

designs and targeting distinct cognitive processes, limited the opportunity to investigate any single 

mechanism in greater depth, as could have been achieved, for example, by systematically modifying 

parameters within a single paradigm. Moreover, except of the dot-probe task, most tasks were 

administered only once throughout the project, limiting the possibility to assess the replicability of 

specific effects across different samples. Finally, the generalizability of the present findings is limited by 

both the sample characteristics and the experimental paradigms employed. As the studies focused 

exclusively on young adults, it remains unclear whether similar cognitive and neurophysiological 

patterns would be observed in other age groups, such as adolescents or older adults, who may experience 

loneliness in different social and developmental contexts. Moreover, the experimental tasks used in this 

research, while well-established in cognitive neuroscience, have limited ecological validity and may not 

fully capture how social information processing unfolds in real-life social situations. Future studies may 

address these limitations by combining experience sampling methods with ambulatory physiological 

measurements, allowing for the assessment of cognitive-affective dynamics in naturalistic settings. 

Additionally, employing dyadic or interactive paradigms could provide further insight into how the 

cognitive mechanisms identified here operate during actual social encounters. 
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Abstract
It has been hypothesized that lonely individuals demonstrate hypervigilance 
toward social threats. However, recent studies have raised doubts about the re-
liability of tasks commonly used to measure attentional biases toward threats. 
Two alternative approaches have been suggested to overcome the limitations of 
traditional analysis of attentional bias. First, the neurophysiological indicators 
of orienting to threats were shown to have superior psychometric characteristics 
compared to overt measures of behavioral performance. The second approach 
involves utilizing computational modeling to isolate latent components cor-
responding to specific cognitive mechanisms from observable data. To test the 
usefulness of these approaches in loneliness research, we analyzed behavioral 
and electroencephalographic (EEG) data from 26 lonely and 26 non-lonely par-
ticipants who performed a dot-probe task using a computational modeling ap-
proach. We applied the Drift Diffusion Model (DDM) and extracted N2pc—an 
event-related potential that serves as an indicator of spatial attention. No evi-
dence for social threat hypervigilance has been found in DDM parameters nor 
in N2pc characteristics in the current study. However, we did observe decreased 
drift rate and increased variability in drift rate between trials within the lonely 
group, indicating reduced efficiency in perceptual decision-making among lonely 
individuals. These effects were not detected using standard behavioral measures 
used in the dot-probe paradigm. Given that DDM indicators were sensitive to 
differences in perceptual discrimination between the two groups, even when no 
overt differences were found in standard behavioral measures, it may be postu-
lated that computational approaches offer a more comprehensive understanding 
of cognitive processes.
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1   |   INTRODUCTION

Perceived Social Isolation (PSI), or loneliness, is a subjec-
tive distressing feeling of mismatch between actual and 
desired social relationships (Cacioppo & Hawkley, 2009). 
PSI can be caused by objective social isolation but is also 
present in people with extensive social networks (Coyle 
& Dugan,  2012). Loneliness is currently perceived as a 
significant risk factor both for mental and physical health 
(Matthews et al., 2019); thus, it is increasingly perceived 
as a public health issue. The negative impacts of loneli-
ness may be particularly striking in the COVID-19 era 
when social distancing policies increased the risk of PSI 
(Killgore et al., 2020). To explain the effect of loneliness 
on an individual's functioning, the Evolutionary Theory 
of Loneliness (ETL) was proposed (Cacioppo et al., 2014). 
ETL operationalizes PSI as a warning signal from the body 
informing about insufficient social bonds, and, as such, 
it may serve as motivation to reconnect with others. To 
facilitate reconnection and avoid missing reconnection 
cues, lonely individuals may be more vigilant toward so-
cial signals. However, as cognitive mechanisms are biased 
toward self-preservation, this adaptation may make one 
particularly vigilant toward signals of danger, especially in 
the social domain. As a result, cognitive mechanisms elic-
ited by PSI, which should facilitate social contacts, may 
hinder an individual's social functioning, such as via hy-
pervigilance toward social threats (Spithoven et al., 2017). 
In line with this formulation, lonely individuals have been 
shown to fixate their gaze on threatening social stimuli 
more quickly (Bangee et al., 2014; Qualter et al., 2013) and 
to differentiate negative social stimuli from negative non-
social stimuli faster at the neural level compared to non-
lonely individuals (Cacioppo et al., 2015, 2016).

However, the evidence for the attentional bias toward 
social threats in loneliness is far from being consistent 
(Lodder et al., 2015), and the impact of loneliness on social 
cognitive processes is still being investigated. For exam-
ple, we have recently shown that objective, but not per-
ceived, social isolation is linked to lower-level social cue 
detection in a battery of social-cognitive tasks (Okruszek 
et al.,  2021). Heterogeneity of findings in loneliness re-
search may be attributable to significant discrepancies 
between paradigms used to study the processing of social 
cues (Spithoven et al., 2017).

Although the number of studies investigating atten-
tional bias to social threats in lonely individuals is rel-
atively limited, attentional bias and hypervigilance to 
threats has been extensively investigated in specific neu-
ropsychiatric populations, such as individuals with anx-
iety disorders (Cisler & Koster,  2010). Certain anxiety 
disorders have been associated with attentional bias to 
distinctive types of threatening signals (Pergamin-Hight 

et al.,  2015). For example, hypervigilance toward social 
threats has been commonly observed for negative social 
stimuli among individuals with a social anxiety disorder 
(Bantin et al., 2016). Furthermore, attentional bias mod-
ification treatment can be an effective intervention for 
reducing anxiety symptoms (Linetzky et al., 2015). Thus, 
it is important to examine the reliability of methods that 
are commonly utilized to measure attentional bias, most 
commonly the dot-probe paradigm (MacLeod et al., 2019).

During the standard dot-probe paradigm, research par-
ticipants are asked to respond a presented target stimulus 
(e.g., dot), that is preceded by lateralized cues, which can 
be either non-salient (e.g., two neutral cues) or differ in 
salience (e.g., threat-related cue vs. neutral cue). By ma-
nipulating the presence and location of the salient cue, 
processes associated with orienting, engaging, and dis-
engaging attention from the stimulus may be examined 
(Torrence & Troup,  2018). Traditionally, this is achieved 
by comparing mean Response Times (RTs) to congruent 
and incongruent trials. The direction of the observed ef-
fect is usually interpreted as facilitation (faster reaction in 
congruent trials) or avoidance (faster reaction in incon-
gruent trials). Accuracy data are rarely used in analysis 
due to the ceiling effect in non-clinical groups. Moreover, 
average RTs as a main outcome of the dot-probe task have 
been subject to considerable criticism due to poor reliabil-
ity when measured both with the split-half (Kappenman 
et al., 2014) and test–retest method (Schmukle, 2005).

Internal consistency is also important to consider 
when designing measures, and can tell us whether a mea-
sure can distinguish participant differences enough for 
correlational analyses (Clayson et al., 2021). Experimental 
paradigms can minimize between-subject variance to in-
crease chance of detection of within-subject effect (Hedge 
et al., 2018). Healthy participants usually perform the dot-
probe paradigm with high accuracy and have similar RTs; 
therefore, between-subjects variance is often relatively 
low. Yet, prior research has found that low reliability does 
not preclude use of experimental paradigms for analyses 
of between-group differences (Hedge et al., 2018).

There is also a general lack of consistency in find-
ings across dot-probe behavioral outcomes (e.g., average 
RT). Reviews of studies that utilized the dot-probe task 
to measure emotional attention have found either vigi-
lance toward threats (shorter RTs for threat-congruent 
locations), threat avoidance (longer RTs for threat-
congruent locations) and no effects of emotional at-
tention on dot-probe performance (Bantin et al.,  2016; 
Shechner et al.,  2012; van Rooijen et al.,  2017). 
Attentional bias may be a function of stimulus onset 
asynchrony, resulting in a vigilance effect if stimuli are 
presented with 100 ms duration but an avoidance effect 
if stimuli are presented for longer (Cisler & Koster, 2010; 
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Cooper & Langton, 2006; Koster et al., 2006). While this 
may explain heterogeneity of results in the field to some 
extent, similar incoherent outcomes are observed when 
comparing studies with the same stimulus onset asyn-
chrony (Roy et al., 2015). This heterogeneity challenges 
the utility of RT measures, since they may reflect a com-
position of attentional effects and other effects, such as 
cognitive control (Dennis-Tiwary et al., 2019).

Two different ways of overcoming the limitations of 
classical analysis of the attentional bias in the dot-probe 
task have been proposed. First, neurophysiological indi-
cators of orienting to threats during a dot-probe task show 
superior psychometric characteristics compared to overt 
measures of dot-probe task performance (Kappenman 
et al., 2014). To the best of our knowledge, there are no 
prior studies investigating attentional bias in lonely partic-
ipants using event-related potentials (ERPs). Detection of 
salient stimuli in one of the visual hemifields is reflected 
by the enhanced amplitude of the N2pc component, 
which is defined as the difference between the activity ob-
served between 200 ms and 300 ms in the parieto-occipital 
regions that are contralateral and ipsilateral to the pre-
sented salient target (Mazza et al., 2009). A recent review 
of studies using facial stimuli has concluded that, despite 
some inconsistencies across the studies, N2pc may be a 
marker of attentional bias toward fearful and angry facial 
expressions (Torrence & Troup,  2018). Furthermore, the 
presence of salient cues during the dot-probe task has 
been found to impact ERPs observed in response to tar-
get stimuli (Zhang et al.,  2017). While the P1 and N170 
components are also used in attention research, they do 
not necessarily provide the same level of specificity as the 
N2pc in terms of attentional selection processes (Gupta 
et al.,  2019; Verleger et al.,  2012). The P1 is thought to 
reflect the initial sensory processing of a visual stimulus, 
and the N170 is mainly associated with the processing of 
faces and other complex visual stimuli (Kiss et al., 2008). 
Thus, the N2pc appears to be the most suitable measure to 
study attentional bias.

A second approach that has been proposed to improve 
reliability of outcome measures of the dot-probe task is 
to apply computational modeling to disentangle specific 
processes reflected in reaction time and accuracy data 
(Takano et al., 2021). Computational models are becoming 
increasingly popular in the field of neuroscience because 
of their ability to uncover unobserved parameters of deci-
sion making and perceptual processes, which may provide 
necessary links between overt behavior and neurophysio-
logical processes (Palmeri et al., 2017). Recently, a compu-
tational modeling method known as the Drift Diffusion 
Model (DDM) has been proposed for dot-probe data anal-
yses (Price et al., 2019). Particularly, by modeling RT dis-
tributions and accuracies, DDM extracts parameters that 

are used to produce optimal fit for one's observed behavior 
under the assumption that decisions are made by contin-
uously accumulating evidence (information) in noisy en-
vironments. Evidence is sampled from the environment 
until the decision threshold is reached and a response is 
initiated (Ratcliff & McKoon, 2008). Importantly, DDM al-
lows disentangling various aspects of the decision-making 
process by extracting parameters with clear psychologi-
cal interpretation. First, the decision-making process is 
described by a drift rate (v) parameter; that is, the mean 
rate of accumulation of information that is needed to 
reach the response threshold (a), which reflects speed-
accuracy tradeoff. However, DDM also accounts for the 
processes (e.g., perceptual processing, motor response) 
that are conveyed via non-decision time (t0) parameter. By 
separating decision and non-decision making processes, 
DDM allows for effective measurement of attentional bias 
observed during the dot-probe task. The aforementioned 
study by Price and colleagues has found good psycho-
metric characteristics of t0 parameters and demonstrated 
negative associations between attentional and emotion 
control networks and t0 parameters in fMRI analysis, thus 
providing a strong rationale for modeling dot-probe data 
using DDM (Price et al., 2019). Recent collaborative stud-
ies have assessed the validity of model-based analysis of 
RT data, in which seventeen research teams analyzed the 
same data set using cognitive models (Dutilh et al., 2019). 
The authors concluded that high agreeableness in conclu-
sions were observed, despite each team using a different 
modeling approach; this justifies computational-based 
modeling. However, researcher degrees of freedom had 
a tangible impact on the results; therefore, parsimonious 
models are required.

Taken together, evidence suggests that both neurophys-
iological indicators and computational approaches are re-
liable ways of investigating the effects of attentional bias 
observed during the dot-probe paradigm. Given the incon-
sistencies of the previous literature on the hypervigilance 
to social threats in loneliness, the current study aims to in-
vestigate the presence of attentional bias to social threats 
in lonely individuals. In the first step, we will analyze the 
impact of affective stimuli (neutral vs. angry) and task 
instruction (inhibitory vs. non-inhibitory target location) 
on explicit behavioral measures (RT), implicit behavioral 
measures (DDM parameters) and implicit neurophysio-
logical measures (ERP markers). Next, to test predicted 
by the ELT hypervigilance to social threats in lonely indi-
viduals, we will analyze patterns of within-subject results 
in each group. We hypothesize (1) increased N2pc and 
(2) shorter non-decision time, in responses to angry faces 
among lonely individuals compared to their non-lonely 
counterparts. Furthermore, as increased attentional bias 
may affect decision-making processes, this study will 
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include exploratory analyses to examine the influence of 
loneliness on other DDM parameters.

2   |   MATERIALS AND METHODS

2.1  |  Participants

For this study, 52 right-handed individuals (32 female) 
aged 18–35 with no known history of substance abuse, 
cardiovascular, neurological, or psychological disorders 
were recruited via social media platforms. Due to the 
electrocardiographic measurement conducted in the 
wider study (but not discussed in this article), individu-
als with a body mass index above 30 were not eligible 
to take part in the study. Individuals who met the crite-
ria of a depressive episode as measured by the 20-item 
Center for Epidemiological Studies Depression Scale – 
Revised (CESD-R) were also not eligible to take part in 
the study.

Individuals were screened on subjective loneliness, 
measured by the Polish version of the Revised UCLA 
Loneliness Scale (R-UCLA; Kwiatkowska et al.,  2017). 
Prior research on the distribution of R-UCLA scores 
among an independent sample of 1159 young adults aged 
18–35 years was used to determine the quartiles of the R-
UCLA scores in the Polish population. In the current study, 
only individuals with R-UCLA scores corresponding with 
the first (R-UCLA ≤32) and fourth (R-UCLA ≥49) quartile 
of all R-UCLA scores were included to create two equi-
numerous groups: low-loneliness (Q1) or high-loneliness 
group (Q4). Both groups were matched in terms of sex 
(X2 (1) = 0.73, p = .39) and age (low-loneliness M = 26.65, 
SE = 1; high-loneliness M = 25.92, SE = .84; t(50) = −0.56, 
p = .58). Table  1 shows demographic statistics for each 
group.

2.2  |  Stimuli

Stimuli for the current study were selected from the 
FACES database (Ebner et al., 2010). Overall, 240 faces 
displaying neutral or angry expressions were selected from 
pictures of young and middle-aged actors and cropped 

into oval-shaped masks sized 522 × 404 pixels. An equal 
number of male and female faces were included. The full 
list of the stimuli used is available in the osf.io repository 
(osf.io/nkf5c/). All stimuli were adjusted in terms of lumi-
nance (mean pixel value of the greyscaled pictorial stimuli 
– mean luminance = 133.3) and contrast (standard devia-
tion of all pixels – mean contrast = 20.2) using “rgb2gray” 
function in Matlab.

2.3  |  The dot-probe task

The task procedure was programmed using Presentation 
21.1. All stimuli were presented on a gray background. 
Each trial began with a 500 ms display of a fixation cross, 
followed by the simultaneous 200 ms display of two faces 
(angry and neutral) on opposite sides of a 24 inch screen 
(Iiyama prolite PL2483h, refresh rate = 60 Hz) centered at 
8.1 degree visual angle from the fixation cross. One third 
of the trials presented the angry face on the left side, 1/3 
on the right, and 1/3 featured two neutral faces. The 
same actor was presented in each pair of pictures, so in 
the neutral trials, the same photo was displayed on both 
sides, while in the angry-neutral trials, the same actor 
was presented with two different expressions. The tri-
als were counterbalanced with respect to the sex of the 
actors. Each actor was presented three times over the 
runs of the task (neutral-neutral, angry-neutral, neutral-
angry). The order of the trials was pseudo-randomized, 
and each trial concluded with the 1000 ms display of a 
target stimulus (either a horizontal or vertical colon) on 
either the left or right side of the screen. Each run lasted 
7 min and included 240 trials, with one minute of rest in 
between. In total, the experiment was composed of 3 runs 
with 720 trials. Task design is shown in Figure 1. Before 

T A B L E  1   Demographic statistics for each group.

Group Lonely
Non-
lonely

UCLA-R mean score 56.8 ± 4.21 27.7 ± 3.7

% of male 31 ± 47 44 ± 51

Years of education 13.9 ± 2.2 14.8 ± 2.6

Age (years) 25.9 ± 4.3 26.7 ± 5.2

F I G U R E  1   Task scheme. In each trial, participants were 
presented with a fixation cross for 500 milliseconds, followed by 
a pair of two faces presented for 200 milliseconds. The trial ended 
with the presentation of the target stimuli for 1000 milliseconds.
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the main task, each participant underwent training. In 
the first 12 trials, they were asked to respond to the target 
without preceding faces. For the second part of training 
(24 trials), both the faces and the targets were included. 
Due to the programming error at the early stages of ex-
periment design, jitter was not included. Unfortunately, 
this was not recognized until data collection had already 
begun. Script used for generating this task in Presentation 
software may be found online in osf.io repository (osf.io/
nkf5c/).

The experiment was designed in 3 × 2 manner: Probe 
Congruence (3 levels): (a) probe congruent – probe occur-
ring in place previously occupied by angry face; (b) probe 
incongruent; (c) baseline – two neutral faces), target type 
(2 levels): (a) non-inhibitory – side of colon consistent 
with an arrow that participant has to press; (b) inhibitory 
– side of colon inconsistent with an arrow that participant 
has to press).

Participants were seated 70 cm from the screen and 
instructed to respond with a right arrow if the dots 
were presented in a vertical orientation and react with 
a left arrow if the dots were displayed in a horizontal 
orientation.

2.4  |  Procedure

The experiment procedure was held at the Laboratory of 
Neurophysiology and Neuromodulation at the Institute 
of Psychology, Polish Academy of Sciences in Warsaw. 
Participants first provided their written informed con-
sent, then the experimenters prepared the cap on the 
participant's head and explained the task instructions. 
Participants were instructed to press the right arrow 
button if the target was a horizontal colon and the left 
arrow button if the target was a colon rotated by 90 de-
grees, as quickly and accurately as possible. During the 
task, the participant was alone in a dimly-lit, sound-
attenuated room. The procedure was approved by the 
Ethical Committee at the Institute of Psychology, Polish 
Academy of Sciences.

2.5  |  Power sample calculation

Due to the robustness of the N2pc effect in dot-probe stud-
ies (Liu et al., 2020), we expected a large effect size (Cohen, 
1988). Power for the ANOVA was set using an α of 0.05, 
two-level between subject factor, and Cohen f equal to 0.4, 
and calculated using “WebPower” R package version 0.6. 
The calculation indicated that a sample of 26 participants 
per group was sufficient to meet 80% power. However, 
given that the interaction effect is typically smaller than 

the main effect (Li et al., 2006), our study may be under-
powered for modulation by group effect based on these 
parameters.

2.6  |  EEG recording and analysis

The EEG signal was recorded from a 64-channel 
NeuroScan QuikCap connected to a SynAmps RT ampli-
fier. Electrodes on the cap were placed according to the 
10/20 international system, with four additional elec-
trodes for electrooculogram monitoring (one above and 
one below the left eye and one for each corner of the eye). 
To record data, the CURRY 8 system was used. An online 
sampling rate was 1000 Hz, and the impedance at each 
electrode was kept below 5 kOhms. Preprocessing and 
analysis of the EEG signal were carried out offline using 
Matlab R2020b toolboxes – EEGLAB 2023.0 (Delorme 
& Makeig,  2004) and ERPLAB 9.10 (Lopez-Calderon 
& Luck,  2014). The signal was downsampled to 250 Hz, 
bandpass filtered with default EEGLAB filter (zero-phase 
Hamming-windowed finite impulse response filter) with 
0.1 and 30 Hz passband edges and −6 dB cutoff frequency, 
and average re-referenced. Based on visual inspection, 
signal fragments that were corrupted by noise were re-
moved. Bad channels that exhibited noise were detected 
with clean_rawdata EEGLAB function with autocorrela-
tion criterion set to 0.8 and interpolated with spherical 
interpolation. Subsequently, the signal was decomposed 
by the ICA algorithm and then the components represent-
ing noise were rejected with use of the ADJUST (Mognon 
et al., 2011) and MARA (Winkler et al., 2011) algorithms.

To analyze the N2pc, the signal was divided into 700 ms 
epochs with a 200 ms baseline at the probe onset. Epochs 
were excluded from further analysis if peak-to-peak am-
plitude of moving window of size 200 ms and step 20 ms 
within trial exceeded ±100 μV on any of the channels or 
if the participants provided an incorrect response to the 
target (overall, 7.1% of data was rejected). Preprocessing 
script is available in the osf.io repository (osf.io/nkf5c/). 
As evidenced by the review of the studies included in the 
recent meta-analysis of the N2pc response to facial stim-
uli (Liu et al., 2020), this effect is usually measured over 
P7 and P8 electrodes and quantified in the time window 
starting no earlier than 160 and no later than 350 ms post 
stimulus onset. Thus, upon visual inspection of the current 
data (Figure 2), we have decided to use signal observed at 
P7/P8 electrodes within a time window between 250 and 
325 ms to quantify N2pc effects. Amplitudes and fractional 
area latencies were averaged across three conditions: con-
tralateral, ipsilateral, and baseline. In contralateral and 
ipsilateral conditions, the amplitudes were categorized 
based on the position of the angry face relative to the 
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electrodes. Specifically, in the contralateral condition, the 
image of an angry face was presented in the visual field 
opposite to the electrode's position, while in the ipsilateral 
condition, the image of an angry face was presented in the 
visual field on the same side of the electrode. Data from 
both P7 and P8 electrodes were pooled in each condition 
to obtain measure. The baseline condition served as a ref-
erence point for comparison with the Contralateral and 
Ipsilateral conditions. In the baseline condition, data from 
trials with two neutral faces were averaged from P7 and P8 
electrodes, to establish the magnitude of N2pc when no 
lateralized threat stimulus is presented. Mean N2pc wave 
is shown in Figure 2.

2.7  |  DDM analysis

Preprocessing of behavioral data and estimation of DDM 
parameters was conducted in R 4.0.2 programming lan-
guage (R Core Team,  2013). Trials with no behavioral 
response or with RTs exceeding two standard deviations 
from the mean for a given subject under a given condition 
were excluded from the analysis (4.4% of trials overall). 
After removing trials, groups of Lonely individuals did 
not significantly differ in the mean number of trials from 
Non-Lonely individuals. Participants who had low task 
accuracy, defined as performance more than two standard 
deviations from interquartile range, were excluded (n = 1, 
from Non-Lonely group). A final sample of 51 participants 
(Lonely: n = 26, Non-Lonely: n = 25) was therefore re-
tained in the analytic sample. Table 2 shows the summary 
statistics of RTs and accuracy.

We set our model specification allowing the following 
parameters to be estimated from the data: drift rate (v), 
non-decision time (t0), threshold separation (a), vari-
ability of non-decision time (st0), and variability in drift 
rate (sv). T
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F I G U R E  2   Mean N2pc wave averaged on P7 and P8 electrodes.
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We modeled the upper and lower boundaries, 
respectively, as correct and incorrect responses. 
“Correctness” modeling may be used instead of choice 
modeling when both responses share a similar level 
of difficulty; that is, if  the difference in accuracy and 
RT between the left-side and right-side condition is 
not important (Voss & Voss, 2007). Therefore, we set 
the starting point “z” equal to the upper threshold di-
vided by two (a/2), indicating no bias toward right and 
wrong responses.

Point estimates of model parameters have been ob-
tained with the use of differential evolution Markov Chain 
Monte Carlo (Turner et al.,  2013), based on Hawkins 
et al. (2017). We set prior distribution considerably wide 
because we had no preceding information about potential 
shapes of parameters distributions:

TN(a,b)(�, �) denotes a Truncated Normal distribu-
tion with mean μ and standard deviation σ, with a 
and b as lower and upper limit, respectively. Beta(�, �) 
denotes a Beta distribution with shape parameters α 
and β.

After the estimation procedure, the convergence of 
chains was checked with the use of Rubin & Gelman 
Multivariate Potential Scale Factor (MPSF; Brooks & 
Gelman, 1998). MPSF for all participants was below 1.15, 
which indicates that chains did not fail to converge. RTs 
histogram and DDM generated RTs densities of one par-
ticipant are visualized in Figure 3.

2.8  |  Statistical analysis

2.8.1  |  Behavioral measures

All statistical analyses were conducted with R (version 
4.0.2) except for the ANOVAs, which were conducted in 
JASP (version 0.16.1). RTs, drift rate, non-decision time, 
threshold and variability in drift rate were analyzed using 
repeated-measures ANOVA with Probe Congruence 
and Target type as within-subject factors and Group as 
a between-subjects factor. Holm correction was used for 
multiple comparison corrections in post hoc testing. The 
Greenhouse–Geisser correction was applied to the p val-
ues when sphericity assumption was violated.

2.8.2  |  Erp's components

N2pc component mean amplitude and fractional area 
latency were analyzed in 3 × 2 ANOVA with lateraliza-
tion (3 levels: contralateral, ipsilateral and baseline – 
both faces neutral) as within-subject factors and Group 
as a between-subjects factor. Only trials with correct re-
sponses were used in analysis. Holm correction was used 
for multiple comparison corrections in post hoc testing. 
The Greenhouse–Geisser correction was applied to the p 
values when sphericity assumption was violated.

2.8.3  |  Bayesian analyses

We included additional Bayes factor analyses to quantify 
the evidence for/against hypotheses, in case the main 
confirmatory analyses did not produce significant effects 
(N2pc amplitude/fractional area latency; non-decision 

v ∼ TN(−5,5)(0, 2),

a, sv ∼ TN(0,5)(1, 1),

t0, st0 ∼ Beta(1, 1),

F I G U R E  3   Observed RT (histogram) 
and model generated RT (blue line) for 
one of the participants in congruent 
condition, non-inhibitory trials, correct 
responses. The x axis corresponds to 
response time in seconds. Left y axis 
corresponds to counts (histogram), and 
the right y axis corresponds to the model 
generated probability density of response 
time (blue line).
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time). Bayes factors were calculated by dividing the likeli-
hood by the prior of the best model, which contains the 
group term, to the best model that does not contain the 
group term, as implemented in the Bayesian version of the 
ANOVA in JASP. Bayes factors were interpreted accord-
ing to Kass and Raftery (1995).

3   |   RESULTS

3.1  |  Response times

The main effect of probe congruence was significant (F(2, 
98) = 24.34, p < .001, GGc = 0.184, partial-eta-sq = 0.33) 
with longer RT for congruent trials (M = 0.535, SE = 0.007, 
95% CI [0.521, 0.549]) than for baseline (t(50) = 2.7, 
p = .008, M = 0.532, SE = 0.007, 95% CI [0.518, 0.546]) 
and incongruent trials (t(50) = 6.93, p < .001, M = 0.527, 
SE = 0.007, 95% CI [0.513, 0.541]). Significantly longer 
RTs were found for baseline trials than incongruent trials 
(t(50) = −4.05, p < .001). A robust effect was observed for 
target type (F(1, 49) = 276.23, p < .001, partial-eta-sq = 0.85) 
with longer times compared for Inhibitory trials targets 
(M = 0.55, SE = 0.007, 95% CI [0.536, 0.564]) compared to 

non-inhibitory trials (t(50) = −16.2, p < .001, M = 0.513, 
SE = 0.007, 95% CI [0.499, 0.527]). No between-group ef-
fect, nor any interaction effects, were found for RTs. 
Histograms of all participants' single-trial RTs may be seen 
in Figure 4.

3.2  |  N2pc amplitude

In line with previous observations, a significant effect 
of the lateralization was found (F(2, 98) = 4.8, p = .01, 
GGc = 0.182, partial-eta-sq = 0.089), with less positive am-
plitudes observed for contralateral (M = 2.93, SE = 0.349, 
95% CI [2.233, 3.635]) compared to baseline (t(50) = −2.45, 
p = .032, M = 3.076, SE = 0.349, 95% CI [2.375, 3.777]) and 
ipsilateral (t(50) = −2.87, p = .015, M = 3.1, SE = 0.349, 
95% CI [2.399, 3.801]) presentation of the angry face, 
thus implying a classical N2pc effect. The effects of 
Group (F(1, 49) = 2.27, p = .138, partial-eta-sq = 0.44) 
and Lateralisation × Group interaction (F(2, 98) = 0.157, 
p = .86, partial-eta-sq = 0.03) were not significant. The 
Bayes factor for model containing group effect (BF = 0.35) 
indicated indecisive strength of evidence for or against 
presence of group effect.

F I G U R E  4   Response time histograms for each combination of experimental conditions and group. In columns Probe Congruence 
conditions, in rows Inhibitory conditions. Groups are overlaid at each plot.
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3.3  |  N2pc fractional area latency

The effects of Lateralisation (F(2, 98) = 1.094, p = .339, 
GGc = 0.047, partial-eta-sq = 0.02) and Group (F(1, 
49) = 0.014, p = .908, partial-eta-sq < 0.001) were not signif-
icant. The Lateralisation × Group interaction was also not 
significant (F(2, 98) = 0.824, p = .442, GGc = 0.047, partial-
eta-sq = 0.017). The Bayes factor for the model containing 
group effect (BF = 0.47) indicated indecisive strength of 
evidence for or against presence of group effect.

3.4  |  Non-decision time (t0)

A significant main effect of Target was observed (F(1, 
49) = 252.83, p < .001, partial-eta-sq = 0.84) with shorter t0 
for non-inhibitory (M = 0.318, SE = 0.006, 95% CI [0.307, 
0.329]) compared to inhibitory targets (t(50) = −15.9, 
p < .001, M = 0.356, SE = 0.006 95% CI [0.345, 0.367]). 
No between group differences (F(1, 49) = 0.049, p = .826, 
partial-eta-sq < 0.001) or any higher order interactions 
were found for t0. The Bayes factor for the model contain-
ing group effect (BF = 0.4) indicated indecisive strength of 
evidence for or against presence of group effect.

3.5  |  Drift (v)

A significant main effect of Target was observed (F(1, 
49) = 70.84, p < .001, partial-eta-sq = 0.59) with lower 
drift rate for inhibitory trials (M = 3.65, SE = 0.09, 95% 
CI [3.458, 3.81]) compared to non-inhibitory trials 
(t(50) = −8.34, p < .001, M = 4.33, SE = 0.09, 95% CI [4.154, 
4.507]). A main effect of Group was also found (F(1, 
49) = 6.16, p = .017, partial-eta-sq = 0.11) with lower drift 
rate observed in Lonely individuals (M = 3.8, SE = 0.11, 
95% CI [3.567, 4.01]) compared to Non-Lonely individuals 
(t(49) = − 2.48, p = .017, M = 4.18. SE = 0.11, 95% CI [3.954, 
4.398]). No other effects or interactions were found.

3.6  |  Drift variability (sv)

A significant main effect of the probe congruence was 
observed (F(2, 98) = 4.5, p = .013, GGc = 0.154, partial-
eta-sq = 0.084) with smaller variability in drift rate for con-
gruent trials (M = 0.588, SE = 0.019, 95% CI [0.553, 0.623]) 
compared to baseline trials (t(50) = −3, p = .01, M = 0.636, 
SE = 0.018, 95% CI [0.6, 0.671]). No significant differences 
were observed between incongruent trials and other condi-
tions. A main effect of Group was also found (F(1, 49) = 7.382 
p = .009, partial-eta-sq = 0.131) with larger sv in Lonely 
individuals (M = 0.652, SE = 0.02, 95% CI [0.609, 0.694]) 

compared to Non-Lonely individuals (t(49) = 2.72, p = .009, 
M = 0.57, SE = 0.02, 95% CI [0.526, 0.613]). A significant in-
teraction was also found between Target and Group (F(1, 
49) = 6.34, p = .015, partial-eta-sq = 0.15) with significantly 
smaller sv in non-inhibitory trials in Non-Lonely individuals 
in comparison to inhibitory trials in Non-Lonely individu-
als (t(49) = −2.78, p = .03), non-inhibitory trials in Lonely 
individuals (t(49) = −3.66, p = .003) and inhibitory trials in 
Lonely individuals (t(49) = −3.63, p = .015). No other effects 
or interactions were found.

3.7  |  Threshold separation

Significant main effects of Group (F(1, 49) = 4.35, p = .042, 
partial-eta-sq = 0.08) and Target (F(1, 49) = 209.01, 
p < .001, partial-eta-sq = 0.81) were observed, as well as 
Group × Target interaction (F(1, 49) = 5.23, p = 0.027, 
partial-eta-sq = .1). Within groups, all inhibitory trials 
had a significantly larger threshold (p < .001) than non-
inhibitory trials. Lonely individuals had a significantly 
smaller threshold than Non-Lonely individuals in the 
non-inhibitory condition (t(49) = −2.09, p = .042).

4   |   DISCUSSION

The aim of the present study was to examine mechanisms 
associated with social threat hypervigilance in lonely indi-
viduals by using a well-established attention cueing para-
digm (dot-probe task). By using both neurophysiological 
indicators of task performance and computational mod-
eling methods, we aimed to separate processes associated 
with bottom-up orienting to social threats from top-down 
responses to task demands.

Contrary to our initial hypothesis, we did not ob-
serve any evidence of hypervigilance to social threats in 
lonely individuals in the current study. No differences 
were found between groups in the N2pc effect observed 
in response to the presentation of angry and neutral faces 
(H1). A recent meta-analysis of 13 studies, with 534 par-
ticipants overall, has found increased N2pc amplitude for 
affectively valenced facial expressions (Liu et al.,  2020). 
In line with these observations, we have observed the 
N2pc effect for angry compared to neutral faces presented 
during the dot-probe task, thus replicating the so-called 
“anger superiority effect” (Ceccarini & Caudek, 2013; Liu 
et al., 2020). This effect has been linked to the initial ori-
entation of attention toward social threat cues (Torrence 
& Troup, 2018). Yet, no evidence for increased orienting 
toward angry faces was found in lonely individuals com-
pared to non-lonely individuals. Furthermore, no evidence 
for social threat hypervigilance was found in mean RT and 
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in the DDM parameters, particularly t0 (H2); this parame-
ter, which accounts for processes that are not linked to the 
decision making per se, has been interpreted as a proxy of 
the processes linked to attentional bias during dot-probe 
task (Price et al., 2019). Taken together, no increased so-
cial threat orienting was observed with behavioral, com-
putational or neurophysiological analyses utilized in the 
current study. At the same time, it is worth noting that 
previous electrophysiological studies showed increased 
early orienting toward negative social cues when com-
pared to negative non-social cues (Cacioppo et al., 2015, 
2016). Thus, as only social stimuli were presented as a 
threat and non-threat stimuli in the current study, the 
between-group effects may not have been elucidated.

Furthermore, we found a group effect in drift rate, 
drift rate variability and threshold separation. Lonely in-
dividuals accumulate evidence at a lower rate than non-
lonely individuals. Drift rate is a parameter that indicates 
the mean portion of evidence collected per unit of time. 
Therefore, it is interpreted as the level of discriminabil-
ity of stimuli in between conditions comparison, and as a 
measure of perceptual sensitivity in between group com-
parisons (Voss et al., 2004). Thus, the results of the current 
study suggest that perceptual sensitivity of lonely individ-
uals is compromised in comparison to non-lonely individ-
uals. However, this difference cannot be observed with 
only mean RT because such analysis does not take into 
account the shape of the RT distributions and accuracy 
data. Moreover, in the current study, lonely individuals 
presented larger variability in drift rate, which is a mea-
sure of noise between trials. The source of this noise may 
be external (linked to stimuli that vary in perceptual dif-
ficulty) or internal (trial-to-trial fluctuation in attention, 
motivation, or fatigue) (Ratcliff et al., 2018). As all partic-
ipants were subjected to the same set of stimuli, it could 
be assumed that this difference comes from internal noise; 
that is, the decisional process of lonely individuals is less 
stable between trials. Interestingly, lonely individuals ex-
hibited a lower threshold than non-lonely individuals, but 
only during non-inhibitory trials in the current study. This 
finding indicates that lonely participants executed the 
task faster, but less accurately when the perceptual load 
was low. However, when perceptual load increases, this 
difference disappears. A similar effect was also observed 
in the case of drift rate variability, which may arise from 
suppressing the impact of potential distractors by adopt-
ing a narrow attentional window to account for higher 
perceptual demands (Biggs & Gibson,  2018). Thus, the 
impact of threatening stimuli on lonely individuals may 
interact with the perceptual difficulty of the task. Taken 
together, the results of the current study suggest that re-
duced perceptual sensitivity may be found in lonely indi-
viduals. These effects were found regardless of the type of 

probe, and so may stem from altered processing of social 
stimuli, which in turn reduces efficiency in cognitive tasks 
in lonely individuals. According to ELT, social stimuli 
should produce stronger attentional effects in lonely in-
dividuals. Thus, loneliness may decrease efficiency while 
switching between social perception and task demands in 
complex tasks.

At the whole sample level, we have observed a pattern 
suggesting attentional avoidance. Participant responses 
were significantly slower in trials in which the position of 
the probe was congruent with the target, which suggests 
that attention was driven away from threatening stimuli. 
Importantly, the effect of congruence was not related to 
the DDM t0 or v parameters, both of which have previously 
been shown to be linked to perceptual load (Thompson 
& Steinbeis, 2021). Previous studies (Weindel et al., 2021) 
have found that non-decision time is longer when per-
ceptual demands increase, as more time is needed to en-
code the stimuli. Similarly, higher perceptual demands 
make evidence sampling more difficult and, therefore, 
negatively impact drift rate. Lack of observed differences 
in non-decision time between probe conditions may in-
dicate that longer RTs in congruence conditions are not 
driven by altered time of perceptual processing of stimuli. 
Correspondingly, the lack of observed differences between 
conditions in drift rate implies that each condition is sim-
ilar in terms of perceptual difficulty. The results reveal 
that variability in drift rate decreases when a salient cue 
is present, especially under congruent conditions. On a 
behavioral level, reduced variability in drift rate in con-
gruent conditions has been found to result in longer, yet 
more accurate, responses (Ratcliff & Tuerlinckx,  2002), 
suggesting that the presence of salient stimuli sustains at-
tention on tasks by reducing variability between trials in 
evidence sampling.

The current study has several limitations. First, the 
sample size collected was relatively small in order to de-
tect possible modulation effects. A Bayes factor analysis 
was performed for the hypotheses, which did not pro-
duce significant effects, and revealed that no sufficient 
evidence was gathered in the study to either accept or 
reject some of the hypotheses of the current study, thus 
emphasizing that further research in this area should be 
based on the more numerous samples of participants. 
Second, there was a lack of non-social stimuli presented 
during the task. Therefore, it cannot be inferred if the 
decrease in perceptual sensitivity during decision mak-
ing in lonely individuals is limited to social stimuli only. 
The results observed in the current study could be at-
tributed to less expertise in facial recognition in lonely 
individuals. While we did not measure social cognitive 
capacity in participants of the current study, our previous 
research has shown that objective, rather than perceived, 
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social isolation may predict low-level social cues process-
ing in non-clinical participants (Okruszek et al.,  2021). 
Thus, we have re-examined the results of the current 
study with the measure of the objective social isolation 
(the Lubben Social Network Scale) as a covariate and 
found that inclusion of such covariate does not affect the 
results reported in the current manuscript. Still, incorpo-
ration of the non-social stimuli and objective measures 
of social isolation could prove beneficial and may be ad-
vantageous for future studies in this field, to allow inves-
tigation of whether the decrease of perceptual sensitivity 
is limited to social stimuli or may be a generalized effect 
in lonely individuals. Third, we did not gather arousal 
and valence ratings of photos from participants. Previous 
research has documented abnormal response to both af-
fective and neutral facial vignettes in individuals from 
clinical populations; for example, Anticevic et al. (2012) 
has found that some of the differences in neural activ-
ity observed in patients with schizophrenia may be ac-
counted for by increased neural response to neutral 
faces. While the current study investigated loneliness in 
a non-clinical population of participants, without non-
social control stimuli and behavioral ratings of the pic-
torial stimuli utilized in the study, it may be that more 
lonely participants perceived neutral facial stimuli in a 
different way than their non-lonely counterparts. Fourth, 
the absence of jitter inclusion in our experimental design 
may have potentially influenced the results. However, 
upon comparing the average amplitude of the signal in 
the baseline period between groups, we did not observe 
any significant differences. Therefore, we believe that the 
lack of jitter inclusion might not have had a substantial 
impact on the outcome of our study. Fifth, while the ap-
plication of a computational approach provided novel 
insights into the results of the current study, we analyzed 
neural and behavioral data independently. It may be ben-
eficial to employ joint modeling to further investigate 
cognitive effects of loneliness by applying a framework 
that allows modeling link between DDM parameters and 
neural measures (Turner et al., 2015).
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Abstract

Theoretical  models suggest that loneliness may be linked to abnormal social information

processing and reduced emotion regulation capacity; yet these effects have mostly been

investigated using self-report methods. Therefore, the current preregistered study examined

whether  loneliness  is  associated  with  objective  and  subjective  markers  of  bottom-up

emotional reactivity and cognitive reappraisal efficiency in a cohort of 150 young adults (18–

35 years old) recruited to reflect the distribution of loneliness scores in the Polish population.

Participants  completed an emotion  processing and  regulation  task  with  both  social  and

nonsocial stimuli while their electroencephalography activity was recorded. Contrary to the

hypotheses,  when  faced  with  socio-affective  stimuli,  lonelier  individuals  did  not  exhibit

abnormal  markers of  early  sensory processing,  late  sustained processing,  or  decreased

efficiency in reappraisal use, as indicated by event-related potential markers. Only a weak



association between loneliness and an increased P300 response to negative vs.  neutral

social stimuli was found. This pattern of findings did not align with subjective arousal reports,

which suggested a decreased response to negative social  stimuli  and reduced cognitive

reappraisal efficiency in lonelier participants. These results suggest that loneliness is linked

to  disruptions  in  emotional  self-awareness  rather  than  an  abnormal  response  to  socio-

affective stimuli.

Keywords: cognitive reappraisal, EEG, emotion regulation, hypervigilance, loneliness

Introduction: Understanding the interplay between loneliness and health is among the

current public health priorities, as indicated by the recent United States Surgeon General’s

Advisory on “Our Epidemic of Loneliness and Isolation” (2023). This interest is driven by the

increasing prevalence of  loneliness across Western  populations and its  negative  mental

health effects (J. T. Cacioppo & Cacioppo, 2018; Matthews et al., 2019). Loneliness has

been  considered  a  potent  social  stressor  that  triggers  a  cascade  of  cognitive  and

physiological  responses  (Cacioppo  &  Hawkley,  2009).  Current  evidence  suggests  that

loneliness  is  associated  with  abnormal  social  information  processing,  manifesting  as

heightened sensitivity and increased attention toward social threats (Qualter et al., 2013).

This  tendency  may  impede  individuals  from utilizing  their  top-down resources  in  social

situations (including emotion regulation or taking others’ perspectives). Extensive evidence

links loneliness to self-reported emotion regulation difficulties, as highlighted by a recent

meta-analysis of 61 self-report studies involving over 40,000 participants, which found that

loneliness  is  associated  with  a  greater  reliance  on  maladaptive  emotion  regulation

strategies,  such  as  rumination  and  suppression,  as  well  as  overall  emotion  regulation

difficulties (Patrichi et al., 2024). The imbalance between bottom-up signaling and top-down

cognitive control of emotion is considered one of the main drivers of problems encountered

by individuals with serious mental illness (Quidé et al., 2012). Moreover, the omnipresence

of  situations requiring individuals  to override automatic  responses to  potential  threats  is



central  to  many  stress  theories,  given  the  abundance  of  potential  stressors  in  modern

environments (Brosschot et al., 2018; Quidé et al., 2012; Thayer & Lane, 2000).

Rich  and  robust  methodologies  for  studying  the  interplay  between  emotion  and

cognition  have  been  developed  over  the  past  four  decades  (Dolcos  et  al.,  2011).

Neuroscience studies  seem particularly  important  here,  as  they  have  provided  valuable

insights into the neural architecture of bottom-up salience detection (Vuilleumier, 2005) and

top-down emotion regulation (Ochsner & Gross, 2005), as well as the time course of these

processes.  The  latter  has  helped  to  disentangle  the  temporal  dynamics  of  perceptual,

attentional, and higher-order processes engaged when bottom-up and top-down processes

interact (Dolcos et al., 2011). These studies were mostly conducted using neurophysiological

measures and event-related potential (ERP) methodology. Most ERP studies focused on the

process  of  stimulus  encoding  based  on  the  modulation  of  specific  neurophysiological

responses, indexed by increased amplitudes or shorter latencies of early (perceptual) ERP

components (positive 1 [P1] and N2-posterior contralateral [N2pc]) (Liu et al., 2020; Smith et

al.,  2003),  and later ERPs, associated with attention toward salient  stimuli  and memory

encoding, such as P300 (Ibanez et al., 2012) or late positive potential (LPP) (Hajcak & Foti,

2020); (Weymar et al., 2009); (Schupp et al., 2000). 

Of all electrophysiological markers of emotional modulation, LPP has demonstrated

the highest stability and internal consistency. It can also be reliably quantified, even with

relatively few trials (Moran et al., 2013). LPP amplitude has been identified as a sensitive

marker  of  attentional  bias  toward  negative  social  stimuli  in  healthy individuals  with  high

levels of social anxiety, even in the absence of overt behavioral markers of threat response

(Moser  et  al.,  2008).  A  combined  electroencephalography  and  functional  magnetic

resonance imaging study found that increased LPP responses to negative social stimuli are

accompanied by stronger activation in cortical areas involved in visual and social perception

(Michałowski et al., 2017). Importantly, LPP has also been effectively used as a marker of

emotion regulation strategies, such as reappraisal, which involves reinterpreting the meaning

of  an  emotional  stimulus  to  alter—primarily  reduce—its  emotional  impact.  Successful



reappraisal considerably decreases LPP amplitude when applied during the presentation of

negative emotional  stimuli  (Hajcak et al.,  2010; Kennedy & Montreuil, 2020). In addition,

compared  to  other  emotion  regulation strategies,  such  as  distraction,  reappraisal  has  a

longer-lasting effect. Stimuli that have been reappraised elicit a more attenuated LPP upon

re-exposure  than  those  initially  regulated  through  distraction  (Harrison  &  Chassy,  2017;

Thiruchselvam et al., 2011).

Despite  the  availability  of  well-developed  methodologies  and  reliable

neurophysiological  markers  for  studying  affective  responses—such  as  the  LPP—the

association between loneliness and the neurophysiological underpinnings of affective stimuli

processing remains largely unexamined, and the available findings are inconsistent.  For

example, electroencephalography (EEG) studies using microstate analysis have suggested

that lonely individuals exhibit faster differentiation of negative social stimuli than nonlonely

individuals  (S.  Cacioppo  et  al.,  2015,  2016).  However,  a  study  employing  the  well-

established dot-probe task found no neurophysiological evidence of loneliness-related social

threat hypervigilance, as indicated by the P1 and N2pc components (Mąka et al., 2023). To

the  authors’  best  knowledge,  no  studies  have  investigated  the  association  between

loneliness  and  LPP,  a  robust  and  widely  recognized  marker  of  sustained  attention  and

emotion regulation in response to emotionally evocative stimuli. 

Given these gaps, the present study aimed to investigate how loneliness is linked to

responses to socio-affective information and emotion regulation by integrating self-report

and neurophysiological  markers.  Specifically,  we examined whether chronic loneliness is

associated with heightened neural and physiological responses—such as early and late ERP

amplitudes and Galvanic Skin Response (GSR)—to negative than to neutral social stimuli. In

addition,  we  explored  whether  loneliness  undermines  the  effectiveness  of  cognitive

reappraisal as an emotion regulation strategy, as reflected in both subjective evaluations and

neurophysiological markers. 

Furthermore, the question arises as to whether loneliness is directly linked to the

above-mentioned effects,  given that  it  is  also associated with factors that  may influence



emotion processing and regulation. Both depressive (Etkin & Wager, 2007; Zhang et al.,

2022) and social anxiety (Etkin & Wager, 2007; Zhang et al., 2022) symptoms may heighten

bottom-up  responses  to  negative  stimuli  and  could  act  as  mediators  through  which

loneliness  affects  emotional  reactivity  (J.  T.  Cacioppo  et  al.,  2006;  Lim  et  al.,  2016).

Loneliness  has  also  been associated  with  a  lower  reported  use  of  adaptive  emotion

regulation strategies,  particularly cognitive reappraisal  (r  = −0.23) (Patrichi  et  al.,  2024),

suggesting that lonely individuals tend to engage in reappraisal less frequently in real-life

situations.  This reduced tendency to use reappraisal may, in turn, contribute to diminished

capacity for  its  effective implementation.  In other words,  individuals who reappraise less

frequently may also struggle to apply it  when needed  (Silvers & Guassi  Moreira,  2019).

Another key factor that may mediate the effects of loneliness is cognitive control—the ability

to regulate thoughts and behaviors by managing attention, inhibiting impulses, and updating

goal-relevant information (Miyake & Friedman, 2012). Cognitive control is crucial for emotion

regulation, enabling individuals to reappraise emotional stimuli and shift attention away from

distressing content. As mentioned above, the heightened attentional biases toward socio-

affective  information  associated  with  loneliness  require  greater  compensatory  top-down

cognitive control (J. T. Cacioppo & Hawkley, 2009). Supporting this, recent meta-analytic

evidence  indicates  that  neural  networks  related  to  loneliness  and  cognitive  control  are

functionally  connected.  Lonely  individuals  appear  to  upregulate  cognitive  control  to

compensate  for  their  increased  attention  to  socio-affective  information;  however,  this

prolonged  effort  may  deplete  cognitive  resources,  ultimately  leading  to  affective

dysregulation (Wong et al., 2022). These findings suggest that cognitive control deficits may

be a key mechanism linking loneliness to impaired emotion regulation efficiency. Finally, this

study examines the roles of  depression and social  anxiety as potential  mediators of  the

socio-affective response sensitivity observed in lonely individuals. In addition, we assess the

contributions  of  cognitive  control  and  the  frequency  of  cognitive  reappraisal  use  to  the

success of emotion regulation in lonely individuals.



Materials and Methods

Participants

A total of 150 predominantly right-handed, native Polish speakers aged 18–35 with normal or

corrected-to-normal  vision  were  recruited  via  online  advertisements  from  a  nonclinical

population. During the initial online screening, participants completed the Polish version of

the University of California, Los Angeles Revised Loneliness Scale (UCLA-R) (Kwiatkowska

et  al.,  2017)  and  were  assessed  for  exclusion  criteria.  Individuals  with  neurological  or

psychiatric  disorders,  substance  abuse,  or  cardiovascular  conditions  were  excluded.

Additional exclusion criteria included (i) dysphoria >11 or anhedonia >7 on the Polish version

of the revised Center for Epidemiologic Studies Depression Scale (CESD-R, (Koziara, 2016)

and (ii) body mass index >30. To ensure full coverage of the loneliness spectrum, quota

sampling was applied, with 15 participants per UCLA-R decile based on data from 2,521

participants  from our  prior  studies  (https://osf.io/qzxay).  The  final  sample  (N  =  148;  77

women, mean age = 25.3 ± 4.4 years) was obtained after excluding two participants who did

not complete the study. All participants provided written informed consent, and the study

procedures were approved by the Ethical  Committee  at the Institute of Psychology, PAS

(decision  16/VI/2021).  Participants  received  200  Polish  Zloty  (approximately  45  United

States dollars) for study completion. The sample size was determined to detect a correlation

one-half a standard deviation below the average effect size in personality research (r = 0.17,

Mar et al., 2013).

Procedure

The  study  procedure  consisted  of  two  sessions  conducted  at  the  Laboratory  of

Neurophysiology and Neuromodulation at the Institute of Psychology, Polish Academy of



Sciences. During  the  first  session,  participants  completed  a  series  of  behavioral  tasks,

including the Set-Shifting paradigm reported in this study, as well as a set of social cognitive

tasks  that  were unrelated to the  current  study.  In  addition,  they  performed the Emotion

Processing and Regulation Task, during which EEG activity was recorded. Between the two

sessions,  participants  were asked to complete  a set  of  online  questionnaires  assessing

emotion regulation and psychopathology, which are described in detail below.

Emotion processing and regulation task

Before completing the main tasks, participants were informed about how to use cognitive

reappraisal strategies and were trained to generate reinterpretations of unpleasant stimuli to

reduce  their  emotional  responses  (full  manual  in  Polish  may  be  found  at

https://osf.io/dsvtg/). For example, in response to an image depicting a sinking ship, they

were  encouraged  to  think,  “Although  the  ship  was  sinking,  all  passengers  and  crew

managed to  reach  the  lifeboats  safely.”  Participants  were then  asked  to  generate  their

reinterpretations of the stimuli in the training set and report them to the experimenter. Once

the training was completed and the experimenter determined that the participant was able to

successfully  reappraise  negative  stimuli,  the  main  experimental  procedure  began.  If

necessary, the instruction and training were repeated. During the Emotion Processing and

Regulation Task, participants viewed a total of 240 images while EEG activity was recorded.

These images included 80 negative social images, such as riots and violence; 80 negative

nonsocial images, such as snakes and injured animals; 40 neutral social images, such as

pedestrians; and 40 neutral nonsocial images, such as objects. The images were presented

in two runs of 120 pictures each, with a break in between. To ensure consistency, the stimuli

were matched for luminance and contrast, with full details provided in the Supplementary

Materials.  Each  trial  began  with  a  1-s  cue  instructing  participants  to  either  WATCH or

REAPPRAISE the upcoming stimulus, followed by a 5-s presentation of the image. After

viewing the image, participants rated arousal and valence using a 9-point Self-Assessment



Manikin scale.  Ratings were given freely,  with no time constraints.  A fixation cross was

presented for 1–2 s as the intertrial interval following each trial. Neutral images were always

preceded by WATCH cues, while negative images were equally assigned to either WATCH

or REAPPRAISE cues. The experimental design followed a 3 x 2 factorial structure, with

Condition (Reappraise Negative, Watch Negative, and Watch Neutral) as one factor and

Content (Social, Nonsocial) as the other. The presentation of cues was counterbalanced

across participants (full details are provided in the Supplementary  Materials). A schematic

representation of the task is shown in Figure 1.

Figure 1. Emotion processing and regulation task trial scheme

Mediator variables

Mediator  variables  were  assessed  using  both  questionnaire  and  behavioral  measures.

Depressive  symptoms  were  measured  with  the  CESD-R  (Koziara,  2016),  while  social

anxiety was assessed using the Liebowitz Social Anxiety Scale (LSAS) (Liebowitz, 1987).

Emotion regulation was evaluated with the Emotion Regulation Questionnaire (ERQ) (Gross



&  John,  2012)  and  the  Cognitive  Emotion  Regulation  Questionnaire  (CERQ)  (Marszał-

Wiśniewska & Fajkowska, 2010). However, only the Cognitive Reappraisal subscale from

the ERQ and the Principal Component Analysis-derived Cognitive Reappraisal factor from

the CERQ were included in the analyses. CERQ Principal Component loadings (Table S2)

and  summary  statistics  for  the  factors  (Table  S3)  are  presented  in  the  Supplementary

Materials.   All  scales  demonstrated  good  to  excellent  reliability  in  the  current  sample

(Cronbach’s α = 0.72–0.95). In addition, cognitive control—specifically set-shifting ability—

was behaviorally assessed using the Set-Shifting Task (McRae et al., 2012). Further details

on each variable and its assessment can be found in the Supplementary Materials.

EEG recording and processing

EEG data  were  recorded  using  a  64-channel  QuickCap and  a  Neuroscan  SynampsRT

amplifier  (1000  Hz  sampling  rate).  In  addition,  four  electrodes  were  placed  to  capture

electrooculogram signals. Electrodermal activity (EDA) was recorded from the left little and

ring fingers using the high-impedance Synamps input. Impedances were maintained below 5

kΩ to ensure quality. Offline processing of EEG data was conducted using Matlab R2020b

toolboxes (EEGLAB 2023.0; ERPLAB 9.10). The signal was bandpass filtered (0.1–30 Hz,

zero-phase Hamming-windowed FIR filter), downsampled to 250 Hz, and re-referenced to

the average mastoids. Noisy channels were detected using clean_rawdata EEGLAB function

with autocorrelation criterion set to 0.8 and removed (mean [M] = 1.93, standard deviation

[SD] = 1.27, range = [1, 7]). Independent component analysis was performed, and noise

components were rejected using the ADJUST algorithm (Mognon et al., 2011). Previously

removed channels were interpolated, and the signal was segmented into 5 s epochs with a

200 ms baseline. Trials with residual artifacts (> ±100 µV in peak-to-peak amplitude within a

200 ms moving window and 100ms step) were rejected (M = 9.3, SD = 16.2, range = [0,

140]).  If more than 50% of trials in any Condition × Content cell were marked as artifacts,

manual artifact rejection was performed to assess whether the data could be salvaged, with



all  annotations documented for full  reproducibility.  If  fewer than 50% of  trials in any cell

remained valid after this process, the participant was excluded from further analysis (n= 1).

The EEG preprocessing code is available at https://osf.io/nkf5c/.

ERP extraction

 The scalp amplitude distribution of the grand average waveform is presented in Figure S1

(Supplementary  Materials).  To  analyze  the  timing  and  scalp  distribution  of  specific

preregistered contrasts, we employed a mass univariate statistical approach (Groppe et al.,

2011). EEG signals were averaged for each condition and stimulus type, and four difference

waves were computed: (a) Watch Negative – Watch Neutral and (b) Reappraise Negative –

Watch Negative,  each analyzed separately for  social  and nonsocial  stimuli.  T-tests were

conducted at each electrode and time point (4–4996 ms), with false discovery rate correction

(Benjamini & Hochberg, 1995) applied to control false positives at a nominal alpha level of

0.05. Significant differences in the Watch Negative – Watch Neutral contrast were observed

across almost the entire scalp (Figure 2, left column). In contrast, Reappraise Negative –

Watch Negative effects were found throughout most of the signal duration on posterior and

midline  electrodes,  with  anterior  activity  between  1–3  s  (Figure  2,  right  column).  ERP

components P1, negative 1 (N1), early posterior negativity (EPN), P300, and LPP exhibited

considerable effects and were selected for further analysis. Based on mass univariate plots

and grand average waveforms, P1 (90–140 ms) and N1 (130–190 ms) were defined as

instantaneous  peaks  at  Oz,  with  both  peak  amplitude  and  latency  extracted.  EPN was

measured as the mean amplitude (200–300 ms) at Oz. P300 and LPP were extracted from

averaged centroparietal electrodes (CP1, CPz, CP2, P1, Pz, P2) and analyzed across four-

time windows: P300 (350–500 ms), early LPP (500–1200 ms), middle LPP (1200–2500 ms),

and late LPP (2500–5000 ms). Figure 3 illustrates the averaged ERP waveforms.



Figure 2. Mass univariate analysis results. The left column shows the Watch Negative - Watch 
Neutral contrast, while the right column shows the Reappraise Negative - Watch Negative contrast. 
The top row represents social stimuli, and the bottom row represents nonsocial stimuli. Each panel 
displays t-statistics over time and scalp regions, with red indicating significant positive t-values, blue 
indicating significant negative t-values, and white representing non-significant differences (FDR-
corrected at α = 0.05).
Abbreviation: FDR: False discovery rate

Electrodermal Activity

EDA preprocessing was conducted in Python (3.8.12) using NeuroKit2 (0.1.4.1). The skin

conductance  signal,  measured  in  microsiemens  (µS),  was  cleaned  using  a  4th-order

Butterworth  filter  with  a  3-Hz  cut-off.  Visual  inspection  identified  artifacts  due  to  loose

electrodes, characterized by sharp drops to near zero. These artifacts were automatically

detected and removed. Participants with <50% valid trials in any condition were excluded (n

= 16). To extract the tonic component, a 2nd-order Butterworth filter with a 0.05-Hz cut-off

was  applied,  following  Biopac’s  Acknowledge  approach.  The  tonic  signal  was  then

subtracted to isolate the phasic component. The processed signal was segmented into 6-s

epochs with a 1-s pre-stimulus baseline. Event-related GSR was averaged between 2–5 s

post-stimulus.



Statistical analysis

Behavioral  measures  (arousal  and  valence),  EDA,  and  ERP  difference  scores  were

calculated separately for social and nonsocial stimuli. The scores were computed for Watch

Negative – Watch Neutral and Reappraise Negative – Watch Negative conditions and used

as the primary outcome measures for the task. A paired-sample t-test was conducted to

determine whether the means of the measures used to construct these difference scores

differed significantly.  Next,  the difference scores were correlated with UCLA-R loneliness

scores. Following our preregistered approach, these primary task outcomes were used in

mediation  analyses.  First,  we  examined  whether  the  Watch  Negative  -  Watch  Neutral

difference  for  social  stimuli  was linked  to  UCLA-R  scores  through  psychopathological

variables, specifically LSAS and CESD scores. Next, we tested the associations between

the outcomes from the Reappraise Negative – Watch Negative condition for social stimuli

and UCLA-R scores via Set-Shifting Cost, the Cognitive Reappraisal subscale of the ERQ,

and  the  Cognitive  Reappraisal  principal  component  of  the  CERQ.  Before  conducting

mediation analyses,  correlations between the independent  variables and mediators were

assessed. Mediation analyses were performed using the 'lavaan' R package (version 0.6-

16).  A  Structural  Equation  Model  was  used  to  examine  mediation  effects,  allowing  the

independent  variable  to  predict  both  the  mediators  and  dependent  variable  directly.

Mediation effects were evaluated by testing the statistical significance of the indirect effect,

calculated as the product of the path coefficients linking the independent variable to the

mediator and the mediator to the dependent variable. To minimize the number of models

tested,  mediation  analyses  were  conducted  only  when  loneliness  showed  a  significant

relationship  with  the  dependent  variable.  Code  used  to  fit  models  is  available  at

(https://osf.io/nkf5c/).

Results



Figure 3.  Average ERP waveforms.  Top panel:  Average ERP waveforms from the centroparietal
region (CP1, CPz, CP2, P1, Pz, P2), segmented into four-time windows: P3 (350–500 ms), Early LPP
(500–1200 ms), Middle LPP (1200–2500 ms), and Late LPP (2500–5000 ms) time windows. Bottom
panel: Average ERP waveforms at electrode Oz, highlighting the P1 (90–140 ms), N1 (130–190 ms),



and EPN (200–300 ms) components. Waveforms are displayed separately for social and nonsocial
conditions, including Negative Watch, Negative Reappraise, and Neutral Watch. 
Abbreviation:  ERP:  Event-related  potential;  LPP:  Late  positive  potential;  EPN:  Early  posterior
negativity

Effect of experimental conditions

Effect of experimental conditions on self-reported behavioral response

As expected, both social and nonsocial negative stimuli elicited significantly higher arousal

and were rated as less pleasant than neutral stimuli (all  p < 0.001, Cohen’s d = 1.7–2.4;

Figure 4). Furthermore, when negative social and nonsocial stimuli were reappraised rather

than passively  watched,  participants  rated them as significantly  less  arousing and  more

pleasant (all p < 0.001, Cohen’s d = 0.5–1.3; Figure 4).

Effect of experimental conditions on GSR

Reappraised nonsocial negative stimuli elicited stronger GSR responses (M = 0.011,

SD = 0.016) than passively watched social negative stimuli (M = 0.009, SD = 0.015; t(130) =

3.31, p = 0.001), suggesting heightened autonomic activation during reappraisal. For social

negative stimuli, greater GSR responses were observed for negative stimuli (M = 0.013, SD

= 0.019) than for neutral stimuli when passively watched (M = 0.009, SD = 0.012; t(130) =

2.2, p = 0.028). No other contrasts reached statistical significance.



Figure 4. Mean levels of Arousal, Valence, and GSR across social and nonsocial conditions
Error bars represent the standard error of the mean.
Abbreviation: GSR, Galvanic Skin Response

Effect of experimental conditions on ERP 

P1/N1: The P1 amplitude significantly differentiated between nonsocial negative and neutral

stimuli (t(146) = 2.99, p = 0.003, Cohen’s d = 0.25). In addition, N1 latency was shorter for

nonsocial negative stimuli  than for neutral stimuli (t(146) = -4.5,  p < 0.001, Cohen’s d =

0.38).  However,  no  significant  differences  were  observed  between  reappraised  and

passively watched stimuli.

EPN: For social stimuli, negative images elicited smaller amplitudes compared to neutral

stimuli  (t(146) = -7.86,  Cohen’s d = -0.65,  p < 0.001). In contrast,  for  nonsocial  stimuli,

negative images evoked larger amplitudes (t(146) = 4.71, Cohen’s d = 0.39,  p < 0.001).

Reappraised effects were observed in both stimuli types, with reappraised stimuli eliciting

smaller amplitudes than passively watched negative stimuli for both social (t(146) = -4.47,

Cohen’s d = -0.37, p < 0.001) and nonsocial (t(146) = -3.92, Cohen’s d = -0.32, p < 0.001).



P300/LPP:  The  P300  and  all  LPP  components  (early,  middle,  late)  showed  smaller

amplitudes for passively watched neutral and reappraised negative stimuli than for passively

watched negative stimuli (all p < 0.009, Cohen’s d = 0.22–1.05). The only exception was the

late LPP, where no significant difference was observed in the social negative vs. neutral

contrast.

For a detailed breakdown of results, refer to Table S4 in the Supplementary Materials.

Association between loneliness and outcome measures

Association between loneliness and self-reported behavioral  response to  affective

stimuli 

More lonely participants reported decreased arousal to negative vs. neutral social stimuli, as

indicated by self-reported ratings (r(145) = -0.17,  p = 0.037). No such effect was found for

arousal ratings of nonsocial stimuli (r(145) = -0.11, p = .19). 

No association between participants’ loneliness scores and valence ratings was observed

(social: (r(145) = 0.11, p = 0.2; nonsocial: (r(145) = 0.07, p = 0.39). 

Association between loneliness and neurophysiological response to affective stimuli

More lonely participants exhibited higher P300 differences for negative vs. neutral social

stimuli (r(145) = 0.19,  p = 0.02). However, no significant correlations were found for the

remaining ERPs and GSR (rs between -0.12 and 0.10, all p > 0.25). 

Association between loneliness and self-report markers of cognitive reappraisal use



More lonely individuals reported less efficient cognitive reappraisal of arousal while watching

social  stimuli  (r(145) = 0.17,  p = 0.04) but not nonsocial  stimuli  (r(145) = 0.09,  p = 0.3)

stimuli. No association with valence was found across categories (social: r(145) = -0.06, p =

0.5; nonsocial: r(145) = -0.06, p = 0.5).

Association between loneliness and neurophysiological markers of cognitive 

reappraisal use

No significant associations were found for any of the analyzed neurophysiological markers of

cognitive reappraisal use (rs between -0.12 and 0.10, all p >0.15) 

For the full correlation matrix, see Table S5 in Supplementary Materials.

Mediation analysis 

Relationship between loneliness and mediators

Loneliness was significantly associated with all considered mediators, except for Set-

Shifting  Cost  (r  =  -0.09,  p =  0.28).  Importantly,  loneliness  showed  a  strong  positive

correlation with both social anxiety (LSAS: r = 0.59,  p < 0.001) and depressive symptoms

(CESD: r = 0.54, p < 0.001). In addition, loneliness was negatively correlated with cognitive

reappraisal, as measured by the ERQ (r = -0.332,  p < 0.001) and CERQ (r = -0.406,  p <

0.001), suggesting that individuals who experience greater loneliness tend to employ less

adaptive emotion regulation strategies. No other significant correlations between loneliness

and mediators were found.

Relationship of dependent variables with mediators



Correlations  between  depression  (CESD)  and  N1  amplitudes  revealed  that

participants with higher levels of depressive symptoms exhibited a smaller early attentional

bias toward social negative stimuli than toward neutral stimuli (r(145) = -0.2, p = 0.017). Set-

shifting  cost  was  negatively  associated  with  difference  scores  for  GSR  and  subjective

arousal when comparing reappraised to passively watched negative stimuli (GSR: r(129) =

-0.18,  p = 0.037; arousal: r(145) = -0.21,  p = 0.01). This suggests that greater difficulty in

cognitive flexibility was linked to lower self-reported reappraisal efficiency and reduced GSR

in the reappraisal condition compared to that in the negative condition. No other significant

correlations between mediators and dependent variables were observed.

Mediation analyses

We  conducted  three  mediation  analyses  to  examine  the  indirect  effects  of

psychophysiological  measures  on  loneliness,  using  UCLA-R scores  as  the  independent

variable. Model 1 investigated the P300 difference wave (Watch Negative – Watch Neutral

for  social  stimuli)  as the dependent  variable,  with social  anxiety  (LSAS)  and depressive

symptoms (CESD) as mediators. Model 2 examined the arousal difference score (Watch

Negative – Watch Neutral for social stimuli) as the dependent variable, with social anxiety

(LSAS) and depressive symptoms (CESD) as mediators.  Model  3 assessed the arousal

difference score (Reappraise Negative – Watch Negative for social stimuli) as the dependent

variable, with Set-Shifting Cost,  the Cognitive Reappraisal subscale of the ERQ, and the

Cognitive Reappraisal principal component of the CERQ as mediators.

Model 1: The total effect of loneliness on the P300 difference wave was significant

(B = 0.19,  p = 0.016),  indicating that  higher loneliness scores were associated with  an

increased P300 response to social negative vs. neutral stimuli. However, the direct effect of

loneliness  on  the  P300  difference  wave  was  notably  stronger  (B  =  0.36,  p <  0.001),

suggesting the presence of a suppression effect through social anxiety (LSAS). Specifically,



the indirect effect of loneliness via LSAS was significant but in the negative direction (B =

-0.129,  p = 0.035), partially counteracting the direct effect of loneliness. This pattern likely

reflects  a  complex  interplay  where loneliness and social  anxiety,  despite  being strongly

positively correlated, exhibit opposing relationships with the P300 difference wave, leading to

the  observed  suppression  effect.  In  contrast,  the  indirect  effect  through  depressive

symptoms (CESD) was not  significant  (B = -0.04  p = 0.47). Path coefficients illustrating

these relationships are presented in Figure 5a.

Model 2: A similar  pattern is observed for  the arousal  difference score between

observing negative social and neutral  social stimuli.  The total  effect was significant (B =

-0.17, p = 0.035), indicating that loneliness was linked to reduced differences in participants'

self-reported arousal levels. The direct effect was stronger (B = -0.23, p = 0.028), while the

indirect effect through social anxiety (LSAS) was also significant but in the opposite direction

(B = 0.14, p = 0.026). The indirect effect through CESD was not significant (B = -0.08, p =

0.158). Path coefficients illustrating these effects are presented in Figure 5b.

Model 3: In the third model, no significant mediation effects were observed.

Figure 5.  Mediation  models.  Solid  arrows  represent  direct  effects,  while  dashed  arrows  indicate
indirect effects. Standardized regression coefficients are displayed alongside the arrows.
Abbreviations: LSAS, Liebowitz Social Anxiety Scale; UCLA-R, University of California, Los Angeles 
Revised Loneliness Scale; CESD, Center for Epidemiologic Studies Depression Scale



Discussion

Loneliness has been identified as a strong predictor of negative health outcomes

(Matthews et al., 2019), a relationship that has been attributed to abnormal responses to

social  negative stimuli  (Spithoven et al., 2017). The present study aimed to examine the

relationship between loneliness and behavioral  and physiological markers of response to

social and nonsocial stimuli. Furthermore, we investigated whether loneliness is linked to a

reduced impact  of  cognitive  reappraisal  on  self-reported  and physiological  responses  to

negative stimuli. 

Consistent  with extensive research on neurophysiological  mechanisms underlying

bottom-up affective response generation, we observed greater early, middle, and late ERP

components, as well as increased GSR, arousal, and negativity ratings for negative than for

neutral stimuli. Similarly, neurophysiological responses to negative (vs. neutral) stimuli were

attenuated  when  participants  employed  cognitive  reappraisal  strategies,  highlighting  the

effectiveness of top-down emotion regulation. The most pronounced bottom-up effects of

stimulus content and top-down ERP modulation by reappraisal were observed within the first

2 s of posterior positivity. This aligns with previous findings that report stable and consistent

LPP effects in ERP studies on affective stimulus encoding (Hajcak et al., 2010; Kennedy &

Montreuil, 2020) and cognitive reappraisal (Harrison & Chassy, 2017; Thiruchselvam et al.,

2011). Despite our predictions, we did not observe an association between loneliness and

either  early  automatic  (vigilance-related)  ERPs  or  later-stage  components  considered

markers  of  sustained  response  to  motivationally  salient  stimuli. Notably,  we  found  an

association between loneliness and  increased  P300 amplitudes  in  response  to  negative

social  stimuli  compared to that  in response to neutral  in  our  sample,  which may reflect

increased orienting of attention in lonely individuals (Hajcak & Foti, 2020). Secondly, given

the  extensive  self-report  literature  suggesting  an  association  between  loneliness  and

increased negativity bias (Spithoven 2017), we expected to observe corresponding patterns



in self-reported ratings. However, a contradictory finding emerged: more lonely individuals

reported a smaller subjective arousal difference between social negative and neutral stimuli,

with no comparable effect for nonsocial stimuli.

This pattern suggested that loneliness is associated with an abnormal valuation of social

stimuli. Previous studies have demonstrated that arousal ratings are primarily tracked by late

positive  ERP components  (Rozenkrants  et  al.,  2008).  Based  on  this,  we  would  expect

decreased  LPP  amplitudes  in  more  lonely  individuals.  However,  contrary  to  our

preregistered hypotheses, no differences in LPP were observed between groups.

Importantly, the present study examined whether the relationship between loneliness

and stimulus-driven affective responses is further influenced by psychopathological factors

that shape emotional reactivity. Although no mediating effects of depression were observed,

social  anxiety  was  found  to  suppress  the  effects  of  loneliness  at  both  behavioral  and

neurophysiological  levels.  Our  mediation  analyses  revealed  that  the  loneliness-related

reduction  in  subjective  arousal  towards  negative  social  stimuli  was  less  pronounced  in

participants  with  greater  social  anxiety, which  aligns  with  existing  literature  indicating

heightened negative evaluations of emotional stimuli in socially anxious people (Ziv et al.,

2013). Further, controlling for social anxiety increased the correlation coefficient between

P300 amplitude and loneliness when comparing social negative to neutral stimuli, from 0.19

to 0.36. This suggests that loneliness heightens attentional orienting toward negative social

stimuli,  whereas  social  anxiety  counteracts  this  effect  by  dampening  the  physiological

response. This pattern is consistent with previous studies showing reduced LPP amplitudes

in response to negative social stimuli  in socially anxious individuals (Weinberg & Hajcak,

2011); Mühlberger et al., 2009; Kausche et al., 2022). 

In  line  with  extensive  literature  showing  LPP  sensitivity  to  top-down  emotion

regulation strategies, a robust effect of cognitive reappraisal on LPP markers was observed

across  participants  in  the  current  sample.  However,  contrary  to  our  hypothesis,  no

association  between  loneliness  and  LPP—or  any  other  neurophysiological  indicators  of

cognitive reappraisal use—was found in this well-powered sample, which is representative of



the  loneliness  distribution  in  the  Polish  population.  On  the  other  hand,  self-report  data

indicated  that  greater  loneliness  levels  were  associated  with  a  perceived  decrease  in

subjective arousal reduction during cognitive reappraisal  of negative social stimuli, which

confirms  previous  self-reports  suggesting  weaker  emotional  regulation  skills  in  lonely

individuals (Patrichi et al., 2024). The dissociation between subjective and objective findings

may indicate that loneliness is linked to lower self-efficacy in emotion regulation or reduced

accuracy in assessing its effectiveness. Supporting the first interpretation, a recent study on

coping self-efficacy suggests that loneliness is linked to a reduced sense of effectiveness in

managing emotional challenges (Lee et al., 2023). 

In  conclusion,  the  findings  of  this  study  suggest  that  loneliness  is  linked  to  the

volitional  attentional  orienting toward salient  social  stimuli.  However, results indicate that

lonely individuals exhibit typical affective responses, with no evidence of increased vigilance

or sustained reactions to social threats. Instead, loneliness appears to be associated with

altered behavioral threat appraisal processes, as reflected in subjective self-reported arousal

ratings that do not align with objective neural data. This misalignment between subjective

and objective measures of emotional responses may be attributed to two related constructs:

alexithymia and interoceptive accuracy. 

Alexithymia, characterized by difficulties in identifying and describing emotions, has been

consistently  linked  to  loneliness  (Conti  et  al.,  2023;  Qualter  et  al.,  2009).  Interoceptive

accuracy refers to the ability to perceive and interpret internal bodily signals associated with

emotional states. A study using well-established Cyberball paradigm has shown that social

exclusion can influence this ability, with socially excluded participants exhibiting decreased

interoceptive accuracy (Durlik & Tsakiris, 2015). Arnold et al., 2019 suggest that this effect

may result from a shift in attention from internally to externally focused during challenging

social  situations.  Research  on  alexithymia  and  interoceptive  accuracy  suggests  that

loneliness is linked to altered self-evaluation of emotional responses, which may explain the

discrepancy between subjective arousal ratings and objective neural data observed among

lonely individuals in the present study.



The current  study has some limitations worth noting. Firstly,  we did not measure

alexithymia  or  interoceptive  accuracy,  both  of  which could provide  key  insights  into  the

observed behavioral results. Secondly, our study focused only on cognitive reappraisal as an

emotion  regulation  strategy.  However,  since  loneliness  is  linked  to  various  emotion

regulation  strategies,  differences  may  emerge  in  alternative  strategies  beyond  cognitive

reappraisal. Finally, while this study was preregistered and conducted within a confirmatory

framework, EEG research inherently involves multiple statistical comparisons. Although our

findings  suggest  an  influence  of  loneliness  on  cognitive  processing,  it  is  important  to

acknowledge that many of  the observed effects were close to the statistical  significance

threshold.  If  this  study  had  been  exploratory  and  applied  corrections  for  multiple

comparisons,  most  loneliness-related  associations  would  not  have  reached  significance.

This  highlights the challenges of  detecting subtle effects  in neurophysiological  research.

Rather than expecting strong predictive power from a single ERP measure, these findings

should be interpreted with caution and require replication in large samples to confirm their

robustness. Future studies could explore whether targeted neuromodulation interventions,

such as transcranial direct current stimulation, might help mitigate the effects of reduced

interoceptive accuracy in individuals experiencing loneliness.
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Supplementary Materials

Preregistration Deviations

Table S1

Preregistration deviations

# Details Preregistration
wording

Manuscript
Wording

To what extent is
this a deviation

from the
preregistered plan?

Reason

1 Type Methods EEG recording will 
then be also visually 
inspected to: 1/ 
remove large non-
stationary artifacts and
2/ interpolate noise 
channels if necessary.

 If more than 50% of 
trials in any Condition 
× Content cell were 
marked as artifacts, 
manual artifact 
rejection was 
performed to assess 
whether the data could 
be salvaged, with all 
annotations 
documented for full 
reproducibility.

Minor Unification of EEG 
data preprocessing 
pipeline in all 
projects of the Social 
Neuroscience Lab.

Reas
on

New 
knowled
ge

Timi
ng

Before 
data 
access

2 Type Methods Any residual artifacts 
which would result in 
an abnormally large 
signal (over +/-100 
µV) will be rejected 
prior to the ERP 
extraction.

Trials with residual 
artifacts (> ±100 µV in
peak-to-peak 
amplitude within a 200
ms moving window 
and 100ms step) were 
rejected (M = 9.3, SD 
= 16.2, range = [0, 
140]).

Minor Unification of EEG 
data preprocessing 
pipeline in all 
projects of the Social 
Neuroscience Lab.

Reas
on

New 
knowled
ge

Timi
ng

Before 
data 
access

3 Type Methods Each waveform and 
differential wave will 
be tested against a zero
value. To adjust for 
multiple comparisons, 
Benjamini and 
Yekutieli algorithm for
control of the false 
discovery rate will be 
used, as implemented 
in the mass univariate 
toolbox (Groppe et al.,
2011).

T-tests were conducted
at each electrode and 
time point (4–4996 
ms), with false 
discovery rate 
correction (Benjamini 
& Hochberg, 1995) 
applied to control false
positives at a nominal 
alpha level of 0.05.

Minor Problems with Mass 
Univariate Toolbox

Reas
on

New 
knowled
ge

Timi
ng

After 
data 
access

4 Type Methods Furthermore, data - Minor Bad quality of ET 



from the ET will be 
used to identify and 
reject unattended trials
(when participants did 
not look at the screen 
on the picture longer 
than 50% of 
presentation time - 
2.5s).

data.Reas
on

Plan not 
possible

Timi
ng

After 
data 
access

Fig 1. Preregistration Deviation Table was adapted from Willroth and Atherton 2024.

Stimuli Selection

During the Emotion Processing and Regulation Task (EPRT), static pictures (negative and 
neutral pictures with social or nonsocial content) were presented to participants. Pictures for 
EPRT were selected from the Nencki Affective Picture System, International Affective 
Picture System, and Emo Madrid databases. In order to select pictures, an online pilot study 
was conducted. The original pictures pool consisted of 413 elements (133 non-social 
negative, 80 non-social neutral, 140 social negative, 60 social neutral) selected from 
databases. Half of the pictures were rated by 31 participants and the other half by 36 
participants, all recruited online and aged between 18 and 35. Participants validating the 
pictures were matched by sex and age. Selection from IAPS and NAPS was based on their 
original validations (neutral: valence between 4 and 6, arousal < 5; negative: valence < 4, 
arousal: > 5). Additionally, the set of pictures was supplied by 12 neutral non-social and 18 
neutral social pictures from the Emo Madrid database. Social pictures were selected to avoid
presenting agents looking directly into the camera to avoid eliciting the effect of direct gaze. 
Participants were asked to rate the valence and arousal elicited by pictures on the 9-point 
self-assessment manikin scale (SAM). Subsequently, 80 neutral pictures (40 social and 40 
nonsocial pictures with valence between 4 and 6 and arousal <5) and 160 negative pictures 
(80 social and 80 nonsocial pictures with valence < 4 and arousal >5) were selected.

Repeated measures ANOVAs to examine the effects of Content (2 levels: social, nonsocial) 
and Content (2 levels: negative, neutral) of the picture on arousal and valence ratings. 
Negative photos were rated as more arousing (F(1, 236)  = 1990, p < 0.001) and more 
negative (F(1, 236) = 2085, p < 0.001), compared to Neutral pictures. Social and Nonsocial 
pictures did not differ in terms of mean arousal (F(1, 236)  = 0.79, p  = 0.37) or valence (F(1, 
236) = 0.73, p = 0.39). Furthermore, no interaction between factors was observed. Next, 
photos were divided into six categories: Social Neutral Watch, Nonsocial Neutral Watch, 
Social Negative (Set A), Social Negative (Set B), Nonsocial Negative (Set C), Nonsocial 
Negative (Set D). Sets A and B and sets C and D were matched in terms of presented 
content, e.g. both set C and D presented a similar number of pictures of snakes, spiders, 
and guns.

One-way ANOVAs were used to examine whether the sets elicit a similar affective response 
in pilot-study participants. The four negative sets of stimuli did not differ in arousal (F(3, 156) 
= 1.36, p = 0.26) and valence (F(3, 156) = 1, p = 0.39). Social pictures were matched in 
terms of the number of people presented at them between affective categories (One way 
ANOVA with 2 level Emotionality factor: Neutral and Negative, F(2, 117) = 1.29, p = 0.28). 



To rule out the possibility that non-content-related characteristics of the stimuli will drive any 
between-condition differences in early visual potentials, we have also compared the basic 
physical properties of pictures between sets. No between-set differences were found with 
regard to luminance (F(5, 234) = 0.37, p = 0.87) and contrast of the pictures (F(5, 234) = 
0.96, p = 0.44). To avoid potential effects of sets, the presentation of the "Watch” and 
“Response” for each pair of sets (Set A vs Set B; Set C vs Set D) was counterbalanced 
between participants with regard to their gender and loneliness levels. A list of the final set of
stimuli and their characteristics may be found here, https://osf.io/uck7e.

Experimental setup

Experimental task was programmed in PsychoPy version 2021.1.4. and was presented on 
the BENQ XL2546K monitor (24.5 inch) with 240 Hz refreshing rate. The edges of the stimuli
were at 11.74 degree visual angle from the center of the screen. All stimuli were presented 
against a gray background (RGB 128, 128, 128).

Mediator Variables:

Revised UCLA Loneliness Scale
The UCLA-R (Kwiatkowska et al. 2017) is a 20-item questionnaire with statements about 
perceived social belonging and isolation. Each item is rated from 1 (Never) to 4 (Often). 
Higher scores are indicative of more pronounced loneliness. UCLA-R showed a high degree 
of reliability in the current sample (Cronbach's a = 0.94).

The Set-shifting Task:
The Set-Shifting Task (McRae et al. 2012) assessed cognitive control by requiring 
participants to identify letters at different levels of visual hierarchy in switching and non-
switching trials. Each stimulus consisted of letters at global level (large letters H or S) 
composed of letters at local level (small letters H or S). Based on a color cue, participants 
identified either the global (large) letter or the local (small) letters. Trials were either 
congruent (the same letter at both levels) or incongruent (different letters at global and local 
levels). In switching trials, the color cue changed, requiring participants to shift their focus 
between global and local levels, whereas in non-switching trials, the cue remained the same,
allowing them to maintain their focus. A set-shifting metric was calculated as the difference 
in reaction times between switching and non-switching trials, reflecting cognitive flexibility. 
Set shifting cost was significantly different from 0 (M = 93.8, SD = 73.3; t(146) = 15.53, p < 
0.001).

Center for Epidemiologic Studies Depression Scale-Revised (CESD-R)
Depressive symptoms were measured using the CESD-R (Koziara 2016), a 20-item self-
rating scale that assesses depressive symptoms. Participants rate each item on a 0-3 Likert 
scale, where 0 represents "not at all" and 3 indicates "almost every day." The Polish version 
of the CESD-R has demonstrated good reliability and is appropriate for use in population-
based samples. The total score is derived by summing the responses, with higher scores 
reflecting greater severity of depressive symptoms. CESD showed a high degree of reliability
in the current sample (Cronbach's a = 0.93).



Liebowitz Social Anxiety Scale (LSAS)
Social anxiety was assessed using the LSAS (Liebowitz 1987), a 24-item scale evaluating 
anxiety and avoidance in various social situations. The scale includes two subscales: one for
anxiety/fear and another for avoidance. Participants rate (i) how anxious or fearful they 
would feel in each situation on a 0-3 scale (0 = none, 3 = severe) and (ii) how often they 
would avoid the situation on a 0-3 scale (0 = never, 3 = usually) during the week prior to the 
assessment. The total scores for both subscales are calculated by summing the 
corresponding responses, with higher scores reflecting more severe symptoms of social 
anxiety and avoidance. LSAS showed a high degree of reliability in the current sample 
(Cronbach's a = 0.95).

Emotion Regulation Questionnaire (ERQ)
Emotion regulation strategy use was assessed with the ERQ (Gross and John 2012), a 10-
item scale measuring participants' tendency to use cognitive reappraisal or expressive 
suppression as emotion regulation strategies. Items are rated on a 7-point Likert scale (1 = 
strongly disagree to 7 = strongly agree). Higher scores indicate a stronger tendency to use 
the respective emotion regulation strategy. LSAS showed an acceptable reliability in the 
current sample (Cronbach's a = 0.72).

Cognitive Emotion Regulation Questionnaire (CERQ)
The CERQ (Marszał-Wiśniewska & Fajkowska, 2010) was used to assess the frequency of 
use of nine different emotion regulation strategies: self-blame, rumination, catastrophizing, 
other-blame, acceptance, positive refocusing, refocus on planning, putting into perspective, 
and positive reappraisal. The scale consists of 36 items, and participants are asked to rate 
how often they use each strategy on a 5-point scale (1 = never, 5 = always). Higher scores 
reflect more frequent use of each emotion regulation strategy. For the CERQ, dimension 
reduction was conducted using principal component analysis with promax rotation in the R 
psych package. The analysis identified a three-factor structure comprising Cognitive 
Reappraisal (26% of variance explained), Self-Blame (22% of variance explained), and 
Other-Blame (14% of variance explained). This structure was selected based on factors with 
eigenvalues above 1, which were used in subsequent analyses (see Supplementary 
Materials for further details). CERQ showed a high degree of reliability in the current sample 
(Cronbach's a = 0.81). Loadings of CERQ Principal Components are provided in Table S2, 
Summary Statistics for Factors are provided in Table S3.

 Supplementary Statistical analysis

If a significant effect was found in the difference waves or difference scores, additional 
analyses were conducted to correlate the raw measures (mean ERP waves, GSR, or rating 
scores) with loneliness, separately for each condition contributing to the respective 
difference wave/score. This investigated whether the observed effect could be attributed to 
the relationship between the participants' mean waves/score values in the conditions and 
loneliness.

Supplementary Results



Following the primary analyses, a secondary analysis was conducted to investigate whether 
the observed effects in the difference waves or behavioral scores were associated with the 
mean activity/rating of the conditions involved in the subtraction. Specifically, when 
significant correlations between the differential scores/waves and loneliness were found, 
further correlations with the mean ERP/score values for the relevant conditions were 
performed. However, this secondary analysis did not reveal any significant results.

Supplementary Tables

CERQ Subscale RC1 RC2 RC3
Self-blame -0.090 0.809 0.078
Acceptance 0.343 0.427 -0.128
Rumination 0.015 0.718 0.337
Positive 
refocusing

0.696 -0.420 0.335

Refocus on 
planning

0.573 0.346 -0.271

Positive 
reappraisal

0.870 -0.041 -0.067

Putting into 
perspective

0.693 0.013 0.095

Catastrophizing -0.177 0.455 0.709
Other-blame 0.105 0.046 0.878

Table S2: Loadings of CERQ Principal Components

RC1 RC2 RC3

SS loadings 2.220 1.859 1.609

Proportion Var 0.247 0.207 0.179

Cumulative Var 0.247 0.453 0.632
Table S3: Summary Statistics for Factors

Measure Condition
1

Condition
2

Content t df p Cohe
n's d

Mean
Conditi

on 1

Mean
Conditi

on 2

Mean
Differen

ce

SD of
Difference

Arousal Negative 
Watch

Neutral 
Watch

Nonsoci
al

21.1
0

14
6

<0.001*
**

1.74 5.11 2.49 2.61 1.50

Arousal Negative 
Watch

Neutral 
Watch

Social 21.9
3

14
6

<0.001*
**

1.81 5.12 2.67 2.45 1.35

Arousal Negative 
Change

Negative 
Watch

Nonsoci
al

-6.4
0

14
6

<0.001*
**

-0.53 4.65 5.11 -0.46 0.87

Arousal Negative 
Change

Negative 
Watch

Social -7.2
8

14
6

<0.001*
**

-0.60 4.62 5.12 -0.50 0.83

Valence Negative Neutral Nonsoci -29. 14 <0.001* -2.46 3.29 5.23 -1.93 0.78



Watch Watch al 87 6 **

Valence Negative 
Watch

Neutral 
Watch

Social -27.
99

14
6

<0.001*
**

-2.31 3.33 5.33 -2.01 0.87

Valence Negative 
Change

Negative 
Watch

Nonsoci
al

14.0
5

14
6

<0.001*
**

1.16 4.38 3.29 1.09 0.94

Valence Negative 
Change

Negative 
Watch

Social 15.2
0

14
6

<0.001*
**

1.25 4.61 3.33 1.28 1.02

P300 Negative 
Watch

Neutral 
Watch

Nonsoci
al

9.66 14
6

<0.001*
**

0.80 2.70 1.04 1.66 2.09

P300 Negative 
Watch

Neutral 
Watch

Social 9.29 14
6

<0.001*
**

0.77 2.98 1.44 1.54 2.01

P300 Negative 
Change

Negative 
Watch

Nonsoci
al

-3.7
9

14
6

<0.001*
**

-0.31 2.12 2.70 -0.58 1.87

P300 Negative 
Change

Negative 
Watch

Social -3.6
2

14
6

<0.001*
**

-0.30 2.43 2.98 -0.55 1.83

Early 
LPP

Negative 
Watch

Neutral 
Watch

Nonsoci
al

8.68 14
6

<0.001*
**

0.72 3.42 1.83 1.59 2.21

Early 
LPP

Negative 
Watch

Neutral 
Watch

Social 12.7
9

14
6

<0.001*
**

1.05 4.13 1.98 2.14 2.03

Early 
LPP

Negative 
Change

Negative 
Watch

Nonsoci
al

-5.9
4

14
6

<0.001*
**

-0.49 2.40 3.42 -1.02 2.07

Early 
LPP

Negative 
Change

Negative 
Watch

Social -6.6
6

14
6

<0.001*
**

-0.55 3.04 4.13 -1.09 1.98

Middle 
LPP

Negative 
Watch

Neutral 
Watch

Nonsoci
al

9.36 14
6

<0.001*
**

0.77 2.49 0.68 1.81 2.35

Middle 
LPP

Negative 
Watch

Neutral 
Watch

Social 7.29 14
6

<0.001*
**

0.60 3.45 2.08 1.37 2.29

Middle 
LPP

Negative 
Change

Negative 
Watch

Nonsoci
al

-4.7
6

14
6

<0.001*
**

-0.39 1.45 2.49 -1.04 2.65

Middle 
LPP

Negative 
Change

Negative 
Watch

Social -4.2
8

14
6

<0.001*
**

-0.35 2.54 3.45 -0.91 2.59

Late LPP Negative 
Watch

Neutral 
Watch

Nonsoci
al

7.52 14
6

<0.001*
**

0.62 1.89 0.23 1.65 2.67

Late LPP Negative 
Watch

Neutral 
Watch

Social 3.73 14
6

<0.001*
**

0.31 2.89 1.96 0.93 3.01

Late LPP Negative 
Change

Negative 
Watch

Nonsoci
al

-2.6
9

14
6

0.008** -0.22 1.18 1.89 -0.71 3.21

Late LPP Negative 
Change

Negative 
Watch

Social -1.1
7

14
6

0.242 -0.10 2.60 2.89 -0.29 3.01

N1 
latency

Negative 
Watch

Neutral 
Watch

Nonsoci
al

-4.5
5

14
6

<0.001*
**

-0.38 157.63 162.15 -4.52 12.04

N1 
latency

Negative 
Watch

Neutral 
Watch

Social -1.2
0

14
6

0.231 -0.10 158.64 159.76 -1.12 11.25

N1 
latency

Negative 
Change

Negative 
Watch

Nonsoci
al

1.24 14
6

0.217 0.10 158.80 157.63 1.17 11.44

N1 
latency

Negative 
Change

Negative 
Watch

Social -1.2
4

14
6

0.218 -0.10 157.22 158.64 -1.41 13.86

N1 peak Negative Neutral Nonsoci -1.7 14 0.091 -0.14 -1.92 -1.70 -0.22 1.54



Watch Watch al 0 6

N1 peak Negative 
Watch

Neutral 
Watch

Social 1.66 14
6

0.100 0.14 -1.40 -1.57 0.18 1.29

N1 peak Negative 
Change

Negative 
Watch

Nonsoci
al

-0.1
0

14
6

0.924 -0.01 -1.93 -1.92 -0.01 1.47

N1 peak Negative 
Change

Negative 
Watch

Social -0.6
6

14
6

0.509 -0.05 -1.48 -1.40 -0.08 1.49

P1 
latency

Negative 
Watch

Neutral 
Watch

Nonsoci
al

0.26 14
6

0.794 0.02 117.47 117.14 0.33 15.13

P1 
latency

Negative 
Watch

Neutral 
Watch

Social -0.4
4

14
6

0.658 -0.04 117.58 118.10 -0.52 14.13

P1 
latency

Negative 
Change

Negative 
Watch

Nonsoci
al

1.38 14
6

0.169 0.11 118.94 117.47 1.47 12.90

P1 
latency

Negative 
Change

Negative 
Watch

Social -0.2
2

14
6

0.825 -0.02 117.33 117.58 -0.24 13.43

P1 peak Negative 
Watch

Neutral 
Watch

Nonsoci
al

2.99 14
6

0.003** 0.25 3.50 3.15 0.34 1.39

P1 peak Negative 
Watch

Neutral 
Watch

Social 0.77 14
6

0.441 0.06 3.39 3.29 0.10 1.54

P1 peak Negative 
Change

Negative 
Watch

Nonsoci
al

-1.9
6

14
6

0.052 -0.16 3.28 3.50 -0.22 1.36

P1 peak Negative 
Change

Negative 
Watch

Social -0.3
8

14
6

0.705 -0.03 3.33 3.39 -0.05 1.71

EPN Negative 
Watch

Neutral 
Watch

Nonsoci
al

4.71 14
6

<0.001*
**

0.39 3.27 2.77 0.50 1.30

EPN Negative 
Watch

Neutral 
Watch

Social -7.8
6

14
6

<0.001*
**

-0.65 4.03 4.88 -0.85 1.32

EPN Negative 
Change

Negative 
Watch

Nonsoci
al

-3.9
2

14
6

<0.001*
**

-0.32 2.85 3.27 -0.42 1.30

EPN Negative 
Change

Negative 
Watch

Social -4.4
7

14
6

<0.001*
**

-0.37 3.53 4.03 -0.50 1.35

GSR Negative 
Watch

Neutral 
Watch

Nonsoci
al

1.46 13
0

0.147 0.13 0.01 0.01 0.00 0.01

GSR Negative 
Watch

Neutral 
Watch

Social 2.22 13
0

0.028* 0.19 0.01 0.01 0.00 0.01

GSR Negative 
Change

Negative 
Watch

Nonsoci
al

3.31 13
0

0.001** 0.29 0.01 0.01 0.00 0.01

GSR Negative 
Change

Negative 
Watch

Social 1.50 13
0

0.136 0.13 0.01 0.01 0.00 0.01

Table S4. Results of t-tests and descriptive statistics for analyzed contrasts in the study.

Measure Social Nonsocial Social Nonsocial 



Reappraise vs 
Negative

Reappraise vs 
Negative

Negative vs 
Neutral

Negative vs 
Neutral

Arousal 0.169* 0.085 -0.172* -0.109

Valence -0.056 -0.056 0.105 0.071

GSR -0.091 -0.032 0.007 0.010

P1 peak -0.076 -0.151 0.054 0.021

P1 
latency

0.049 -0.033 -0.007 -0.007

N1 peak -0.025 -0.042 -0.072 -0.024

N1 
latency

0.071 -0.091 -0.094 0.017

EPN -0.060 0.026 0.045 -0.086

P300 -0.074 -0.069 0.194* 0.122

Early 
LPP

0.012 -0.054 0.090 0.042

Middle 
LPP

0.068 -0.027 -0.006 -0.038

Late LPP 0.047 0.011 -0.072 -0.104

Table S5. Correlation table of measures with UCLA-R loneliness scale for four contrasts.



Supplementary Figures:

Figure S1. The grand-average scalp topography of the event-related potentials.
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Abstract

Despite theoretical emphasis on loneliness affecting social information processing, empirical studies lack consensus. We previously 
adopted a clinical science framework to measure the association between social cognitive capacity and bias and both objective and 
perceived social isolation in nonclinical participants. Our prior study found that while objective social isolation is linked to both social 
cognitive capacity and social cognitive bias, loneliness is associated only with the latter. This study extended our previous model using 
a computational approach to capture implicit cognitive processes. We replicated and extended our earlier findings with a new sample of 
271 participants, using neuropsychological tasks and a dot-probe paradigm that was analyzed via Drift Diffusion Model. We presented 
two complementary trajectories of how social cognitive bias may arise: the increased propensity to engage with salient social stimuli or 
a decreased information processing capacity dependent on the presence or absence of potential social threats. Furthermore, we found 
evidence that loneliness is associated with the time needed for perceptual processing of stimuli, both directly and indirectly, via social 
cognitive bias. Taken together, the complex and context-dependent nature of information processing biases observed in the current 
study suggests that complex and multifaceted interventions should be implemented to counter social information processing biases 
in lonely individuals.
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Introduction
Loneliness [i.e. perceived social isolation (PSI)] is a subjective state 
of discrepancy between the quantity or quality of one’s desired 
and actual social relationships (Perlman and Peplau 1981). Empir-
ical studies have established that loneliness and objective social 
isolation are distinct psychosocial constructs that exhibit a weak 
to moderate relationship with each other (Taylor 2020, Okruszek 
et al. 2021). Some studies indicate that loneliness has the most 
detrimental effect on mental well-being (Cho et al. 2019, Park 
et al. 2023), while other researchers emphasize that both phe-
nomena are partially independent risk factors for overall adverse 
health outcomes (Holt-Lunstad et al. 2015, Ma et al. 2021, Cené 
et al. 2022, Kelsall-Foreman et al. 2023). Given the fact that 
loneliness is driven by one’s subjective perception of one’s social 
relationships, rather than by objective characteristics of one’s 
social functioning, a lot of attention has been focused on factors 
that may drive social appraisals in chronically lonely individuals 
who, according to the currently predominant conceptualization 
[Evolutionary Theory of Loneliness (ETL); Cacioppo and Cacioppo 
2018], may display increased orienting to social cues which may 
be biased toward social threat hypervigilance. At the same time, 

empirical support for such mechanisms is rather limited, with 
studies examining the association between loneliness and social 
cognitive processes associated with social perception or emotion 
processing yielding contradictory results (Spithoven et al. 2017). 
However, as evidenced by previous research in this field, divergent 
conclusions of the previous studies may be partially accounted 
for by the methodological factors; for example, the use of ad 
hoc measures with no known psychometric properties and vary-

ing conceptualizations of social cognitive processes. Thus, in the 

largest in sample size up-to-date behavioral study investigating 
social cognitive mechanisms in loneliness, we have adapted a 

comprehensive and well-validated battery of neuropsychological 

tasks (Pinkham et al. 2018) to measure in a psychometrically valid 
manner the association between social cognitive capacity (SCC) 

and objective and perceived social isolation in a large cohort of 
nonclinical participants (Okruszek et al. 2021). This way, we were 
able to show that while Objective Social Isolation (OSI) is linked 
both to low-level processing of social cues [as grasped by social 
perception and emotion recognition Social Cognition Psychome-
tric Evaluation (SCOPE) tasks] and social cognitive bias (SCB), 
loneliness is associated only with the latter (Okruszek et al. 2021).
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While there is general agreement that lonely individuals may 
show a negative SCB, i.e. systematic tendency to appraise social 
stimuli in a negative manner, rather than objective reductions 
or deficits across social cognitive domains, the lack of a clear 
approach to how to operationalize and measure such a bias may 
constitute a clear challenge for future studies investigating social 
information processing in lonely individuals. Importantly, despite 
the calls to extend the measurement of constructs underlying 
normal and abnormal behavior by combining multilevel infor-
mation from genetic, molecular, physiological, behavioral, and 
self-report data (e.g. RDoC; Morris and Cuthbert 2012), research 
on SCB rarely goes beyond a single level of explanation to com-
bine multiple units of analysis (Pinkham et al. 2016, Kaurin et al. 
2022). Furthermore, the way such a bias is conceptualized is 
often driven by the field of investigation, e.g. while schizophrenia 
research focuses on a tendency to interpret ambiguous or neutral 
social cues as indicative of hostile or aggressive intent from others 
(Combs et al. 2007, van der Gaag et al. 2013), studies on anxiety 
disorders tend to investigate perceptual or attentional processes 
associated with the involuntary tendency toward preferential pro-
cessing of threatening or negative social stimuli (Cisler and Koster 
2010, Pergamin-Hight et al. 2015).

While large-scale inclusion of physiological behavioral mark-
ers into loneliness research may not be attainable, one poten-
tial way to address the limited reliability of behavioral markers 
obtained via typical overt measures (i.e. self-report, behavioral 
accuracies, and reaction times) is to derive implicit behavioral 
parameters from explicit behavioral data via computational mod-
eling. By formalizing the behavioral outcomes using mathemati-
cal models, one may uncover implicit parameters directly linked 
to specific cognitive systems and avoid caveats associated with 
analyzing overt outcomes, which may be a juxtaposition of mul-
tiple covert factors (Wilson and Collins 2019). One such approach, 
the Drift Diffusion Model (DDM; Ratcliff and McKoon 2008), has 
proved to be a particularly promising tool for investigating percep-
tual and social decision-making processes. The DDM can break 
down behavioral outcomes from forced-choice action tasks into 
parameters associated directly with accumulating evidence in 
favor of one of various options and extraneous sensory or motor 
processes contributing to an overt behavioral response. This prop-
erty of the DDM approach has been successfully utilized by Price 
et al. (2019), who showed that DDM nondecision time has better 
psychometric properties for studying the impact of social threat 
on sensory processes in individuals with social anxiety compared 
to standard behavioral parameters extracted from a dot-probe 
task. Interestingly, we recently presented preliminary evidence 
that, compared to nonlonely counterparts, lonely individuals may 
show a decreased information accumulation rate, as indicated 
by the DDM drift, rather than an increased susceptibility to the 
impact of negative social stimuli, as indicated by nondecision 
time in the dot-probe task (Mąka et al. 2023).

Thus, the aim of the current study is to establish a multilevel 
model of social information processing in loneliness by replicating 
our previous findings in a novel cohort of individuals and extend-
ing our model by linking overt measures included in it to covert 
DDM parameters. This way, we can examine whether the previ-
ously established link between loneliness and SCB stems from a 
reduced information processing capacity (Mąka et al. 2023) or an 
increased susceptibility to the impact of negative social stimuli 
on socio-perceptual decision-making processes (Price et al. 2019) 
in lonely individuals.

Methods
Participants
Data for the current study were pooled from two projects 
investigating the neurophysiological underpinnings of loneliness 
(National Centre of Science, Poland 2018/31/B/HS6/02848 and 
2019/35/B/HS6/00517, PI: Ł.O.). Sample 1 consisted of 163 individu-
als who were recruited to correspond with the distribution of the 
Revised UCLA Loneliness Scale (UCLA-R) scores in a Polish pop-
ulation. Sample 2 included 108 individuals with UCLA-R scores 
corresponding to the lowest (Q1) or highest (Q4) scores in a Polish 
population. In total, 271 right-handed individuals (150 females) 
aged 18–35 years (M = 24.94, SD = 4.54 y.o.) with no history of sub-
stance abuse, cardiovascular or neurological disorders, and, in 
the case of Sample 2, Magnetic Resonance Imaging contraindi-
cations were recruited via social media platforms. Participants 
were also screened for current depressive episodes as indicated 
by anhedonia and dysphoria cut-off scores in the Polish version 
of the revised Center for Epidemiologic Studies Depression Scale 
(Koziara 2016).

The study procedure was held at the Institute of Psychology 
PAS in Warsaw. Each participant provided informed written con-
sent to the project-specific procedures, which were the same for 
each of the projects. The behavioral and self-report procedures 
described below were approved by the Ethical Committee at the 
Institute of Psychology, PAS (decisions 21/XI/2019 and 16/VI/2021). 
A post-hoc power analysis, conducted using the “pwr” R package, 
indicated that a sample size of 271 participants would provide 
sufficient statistical power (80%) to detect a Pearson correlation 
coefficient of 0.17.

Assessment of social cognitive capacity and bias
In alignment with distinctions in clinical neuroscience, we define 
SCC as the ability to perform information processing func-
tions, typically assessed through performance-based measures 
related to social perception, emotion recognition, and theory of 
mind. In contrast, SCB refers to information processing func-
tions that lead to systematically distorted outputs, measured 
using vignette-based (Ambiguous Intentions Hostility Question-
naire, AIHQ; Combs et al. 2007) and self-assessment question-
naires (Davos Assessment of the Cognitive Biases Scale, DACOBS; 
van der Gaag et al., 2013) that assess attribution and hostility 
biases (Roberts and Pinkham 2012). The assessment of SCC in 
our study was based on tasks recommended by the SCOPE con-
sortium (Pinkham et al. 2018). These tasks, which were either 
available or previously validated in Polish by our team, have been 
effectively utilized in studies on social cognitive mechanisms in 
both clinical (Okruszek et al. 2022) and nonclinical (Okruszek 
et al. 2021) populations. The battery included four tasks—The 
Mini Profile of Nonverbal Sensitivity (MiniPONS), the Penn Emo-
tion Recognition Task (PENN ER-40), the Reading the Mind in 
the Eyes Task (RMET), and the Hinting Task (HT)—covering social 
perception, emotion processing, and mentalizing processes. Our 
selection of these social cognition measures was guided not only 
by their psychometric properties but also by the relative simplic-
ity of adapting these tasks to Polish. Notably, the PENN ER-40 
and HT have been highly recommended by Pinkham et al. (2018) 
for their robust psychometric properties. However, it is important 
to acknowledge recent critiques of some of these measures. The 
MiniPONS has faced criticism regarding its psychometric proper-
ties, prompting Pinkham and colleagues to recommend caution in 
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Table 1. Summary statistics for measures of SCC and SCB 
(N = 270, one participant was excluded due to an insufficient 
number of responses in the dot-probe task)

PENN
ER40  PONSS  HINTING  RMET

AIHQ 
BS

DACOBS
42 AB

Mean 82% 47.2 17 26.1 2.7 22.9
SD 8% 4 2.2 3.3 0.6 6.1
Minimum 50% 36 8 14 1 0
Maximum 97% 58 20 34 4 38
Ceiling scores 0 0 21 0  –  –

AIHQ BS, Ambiguous Intentions Hostility Questionnaire Blame Score; 
DACOBS42 AB, Davos Assessment of Cognitive Biases Scale Attribution Bias 
subscale; PENN ER-40, Penn Emotion Recognition Task ER-40.

its use. Similarly, the psychometric properties of the RMET have 
been questioned, concerning both its validity and reliability (Hig-
gins et al. 2023). Despite these concerns, in our present sample, 
all performance-based measures showed correlations with other 
measures of social cognition, suggesting their continued rele-
vance in capturing various aspects of social cognitive processes. A 
detailed description of each task may be found in supplementary 
materials. Descriptive statistics for measures of social capacity 
and social bias are provided in Table 1. We investigated ceil-
ing effects in SCOPE tasks—they were found only in the case of 
HTs, with 21 out of 271 (7.7%) participants scoring the maximum 
possible score on it. 

Assessment of social functioning
In line with our previous research in this area (Okruszek et al. 
2021, 2023), the Polish version of the UCLA-R (Kwiatkowska et al. 
2017) was used to measure loneliness in participants. The UCLA-R 
is a 20-item questionnaire with statements about perceived social 
belonging and isolation. Each item is rated from 1 (Never) to 4 
(Often). Higher scores are indicative of more pronounced loneli-
ness. A six-item version of the Lubben Social Network Scale (SNS; 
Lubben 1988) was used to measure OSI in participants. Two sets 
of three questions are given to measure the number of relatives 
and friends, respectively, with whom the participant: (I) is in reg-
ular contact, (II) may seek help from, and (iii) may confide in. The 
main outcome is the sum of the six questions. For the parsimony, 
the SNS scores have been reversed, so higher scores may reflect 
a more pronounced OSI. Both of the measures showed a high 
degree of reliability in the current sample (Cronbach’s α = 0.94 for 
UCLA-R, α = 0.84 for SNS).

Dot-probe task
Each trial of the task started with the presentation of a white fix-

ation cross for 500 ms, followed by the appearance of two pictures 
of the same actor placed on either side of the fixation cross (CUE) 

for 200 ms. After that, a target stimulus (a colon placed either hor-

izontally or vertically, either on the right or on the left side of 

the fixation cross) was presented for 1000 ms. Participants were 

instructed to respond by pressing either a right or left arrow key 

depending on the orientation (vertical or horizontal, respectively) 
of the colon. The presentation side and orientation of the colon 
were counterbalanced between trials. The task was presented in 
two runs of 160 trials each. During the first run, only neutral faces 
were presented, while in the second run, each trial presented one 
angry and one neutral face. The face of the same actor was pre-
sented twice, once for each block. The facial stimuli consisted of 
160 faces of 80 actors, obtained from the FACES database (Ebner 
et al. 2010) and cropped for the purpose of the current study. 
The presentation of the neutral/angry stimuli was counterbal-
anced with regard to the sex of the actors, target positions, and 

Figure 1. A schema of a trial from the dot-probe task.

correct response to target. Before starting the main task, partic-
ipants underwent training, which included 12 trials without cue 
and 24 full trials. The experimental procedure was programmed 
using Neurobehavioral Systems Presentation software (version 
21.1). The structure of the task is presented in Fig. 1.

DDM parameters estimation
The preprocessing of behavioral data and estimation of DDM 
parameters were carried out using R 4.1.1 (R Core Team, 2013). 
Trials with no behavioral response, responses faster than 200 ms, 
and reaction times exceeding two standard deviations from the 
mean for each participant within each condition were excluded 
from the analysis. One participant was excluded due to an insuf-
ficient (<50%) number of responses in the task. The model was 
set with five free parameters: drift rate (v), nondecision time (t0), 
threshold separation (a), variability of t0 (st0), and variability in 
v (sv). The starting point parameter z was set as a threshold 
divided by two (a/2), due to model specification with bound-
aries representing correct and incorrect responses, respectively. 
The differential evolution Markov Chain Monte Carlo was used 
as an estimation procedure based on Hawkins et al. (2017) The 
convergence of the chains was checked using the Multivariate 
Potential Scale Factor (MPSF; Brooks and Gelman 1998). The MPSF 
for all participants was below 1.15, indicating that the chains con-
verged successfully. We calculated t0 and v separately for neutral–
neutral (baseline) and neutral–angry conditions. To assess psy-
chometric properties of these measures, an odd–even reliability 
analysis was conducted using intraclass correlation coefficient—
ICC(2,1)—version in Shrout and Fleiss (1979) nomenclature. The 
code used to estimate DDM parameters may be found at (https://
osf.io/7xvfg/). Next, we evaluated whether there was a difference 
in DDM parameters between dot-probe conditions. A paired sam-
ples t-test was conducted to compare the scores between the 
baseline and angry conditions for both nondecision time (t0) and 
drift rate (v). For nondecision time (t0), there was a significant dif-
ference in the scores between the baseline (M = 0.347, SD = 0.039) 
and angry condition (M = 0.343, SD = 0.039); t(269) = 2.50, P = .013. 
For drift rate (v), there was also a significant difference 
between the baseline (M = 4.098, SD = 0.443) and angry condition 
(M = 4.003, SD = 0.483); t(269) = 4.80, P < .001. Thus, the presence 
of threatening stimuli decreases the accumulation rate of task-
related information, as evidenced by a lower drift rate, while 
simultaneously reducing reaction time due to nondecisional
processes.

Statistical analysis
In line with the original study (Okruszek et al. 2021), in the 
first step of the analysis, zero-order correlations were calculated 
between main social cognition, social functioning, and dot-probe 
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DDM measures. Next, we examined whether the original model 
incorporating overt measures indicating SCC, SCB, and social iso-
lation was replicated in the sample by combining 271 participants 
from the current study. For a detailed description of the model, 
please see Okruszek et al. (2021). Then, we fitted the model by 
combining 271 participants from the current study with 252 par-
ticipants from the original (Okruszek et al. 2021) study. This anal-
ysis is provided in supplementary materials. Finally, to examine 
the associations between DDM parameters and overt measures, 
we examined a new Structural Equation Modeling (SEM) model 
which includes three types of variable: (i) two outcomes (OSI and 
PSI), which were entered as two correlated observed variables; 
(ii) two latent variables corresponding to SCOPE variables [SCC 
(MiniPONS, PENN ER-40, RMET, Hinting) and SCB (DACOBS42 AB, 
AIHQ BS)] which were entered as correlated predictors of OSI 
and PSI; and (iii) two DDM parameters (t0 and v) which, due to 
their joint modeling, were entered as correlated observed vari-
ables and entered as predictors of (i) and (ii) variables. In the 
SEM approach, exogenous variables—such as drift rate and non-
decision time in this context—are typically modeled as correlated 
by default. This is because, in the absence of predictors, their 
covariance cannot be explained by other variables in the model. 
Consequently, their interrelationship remains unexplained. For 
endogenous variables, while their relationships with exogenous 
variables are specified, the covariance between these endogenous 
variables may not be fully accounted for by these relationships 
alone, suggesting the presence of unexplained covariance due 
to other potential factors. Since the pair of variables OSI and 
PSI, as well as SCC and SCB, show stronger correlations with 
each other compared to their correlations with their respec-
tive predictors in the model, we decided to account for their 
residual covariance by modeling them as correlated within the
model.

SEM models were fitted separately for the DDM parameters 
(t0 and v) extracted from the baseline (Model 1) and neutral–
angry (Model 2) trials. We have chosen this approach to account 
for potential differences in the underlying cognitive processes 
between the two conditions. By modeling the baseline and 
neutral–angry trials separately, we aimed to capture condition-
specific relationships between the parameters, which may be 
influenced by the introduction of threatening stimuli. SEM analy-
sis was performed using the Lavaan package (0.6-16), and model 
fit was assessed using a comparative fit index (CFI > 0.95) and the 
root mean square error of approximation (RMSEA < 0.06) indices. 
Statistical inference of model fit was conducted with chi-squared 
statistics.

Results
Correlational analysis
Zero-order correlations from the current sample may be seen in 
Table 2. 

Model with overt data
In a sample of 270 participants (150 F/120M, 24.9 ± 4.5 y.o.), the 
original three-factor solution (Okruszek et al. 2021: Lower-Level 
Social Cue Perception, Higher Level Mentalizing, SCB) was poorly 
fitted (χ2(15) = 47.10, P < .001; RMSEA = 0.08; CFI = 0.900). How-
ever, the two-factor solution encapsulating all four original SCOPE 
measures under one latent variable (SCC) provided a good fit 
to the data (χ2(16) =22.51, P = .127; RMSEA = 0.03; CFI = 0.98) 
and was further utilized. The variables included in the model Ta
b
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Figure 2. The SEM model with overt data, rectangles depict observable variables, while ellipses symbolize latent factors.

Figure 3. The SEM models of baseline (a; Model 1) and neutral–angry condition (b; Model 2).

explained over one third of the variance in the PSI (35%) and 22% 
of the OSI variance.

In line with our previous observations, positive correlations 
were observed between OSI and PSI (r = 0.48 P < .001) and negative 
between SCC and SCB (r = −0.32 P < .001). Similarly, in line with our 
previous report, SCB was linked to both PSI (beta = 0.56, P < .001) 
and OSI (beta = 0.31, P < .001), while SCC was a predictor of OSI 
(beta = −0.26, P < .001), but not of PSI (beta = −0.08, P = .4). Model is 
presented on Fig. 2.

Extended model with DDM parameters
Model 1, which is shown in Fig. 3a, had a good fit to the 
data [χ2(24) = 30.35, P = .174; RMSEA = 0.031; CFI = 0.982]. Model 
2, depicted in Fig. 3b, also exhibited a favorable fit to the 
data, as evidenced by statistical indices [χ2(24) = 32.45, P = .116, 
RMSEA = 0.036, CFI = 0.976]. In each case, a considerable por-
tion of the variability in PSI (Model 1–38%; Model 2–40%) and 
OSI (22% in both models) was accounted for by the model
predictors.

Notably, intercorrelations were found between OSI and PSI 
(Model 1 r = 0.48, P < .001; Model 2 r = 0.49, P < .001), v and t0 (Model 
1 r = 0.21, P = .001; Model 2 r = 0.22, P < .001), and SCC and SCB 
(Model 1 r = −0.28, P = .017; Model 2 r = −0.33, P = .006).

DDM parameters were significantly linked to overt social cog-
nitive outcomes: in both models v was found to be linked to 
SCC (Model 1 beta = 0.33, P < .001; Model 2 beta = 0.27, P = .002). 
Furthermore, v in the baseline trials (Model 1) was also weakly 
associated with SCB (beta = −0.18, P = .032). In neutral–angry trials 
(Model 2), t0 was found to predict SCB (beta = 0.22, P = .008).

In line with our analysis of overt data from the pooled set of 
523 participants, SCB emerged as a robust predictor of both PSI 
(Model 1: beta = 0.58, Model 2: beta = 0.62, P < .001) and OSI (Model 
1: beta = 0.31, P = .001; Model 2: beta = 0.30, P = .002), while SCC 
was negatively associated only with OSI (Model 1: beta = −0.27, 
P = .006; Model 2 beta = −0.26, P = .007).

No direct association between v and outcome variables was 
observed. At the same time, t0 showed a weak negative associa-
tion with PSI (Model 1: beta = −0.16, P = .007; Model 2: beta = −0.18, 
P = .005).
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Given the associations between DDM parameters and SCC/SCB, 
we also investigated indirect effects and found that v is indi-
rectly negatively linked to OSI through SCC (Model 1 beta = −0.09, 
P = .016; Model 2 beta = −0.07, P = .029), and, in the case of Model 
2, t0 is indirectly positively linked to OSI through SCC (beta = 0.70, 
P = .038). Finally, a positive relationship between t0 and PSI was 
found through SCB for negative-angry trials (beta = 0.14, P = .014), 
thus implying the presence of a suppressing effect in Model 2.

Discussion
The purpose of the current study was to extend the model of tra-
jectories linking social cognitive mechanisms with social isolation 
initially presented by Okruszek et al. (2021). We used compu-
tational modeling to analyze a well-established social informa-
tion processing task. This allowed us to introduce parameters 
that signify implicit processes associated with social information 
processing.

In the first step of the analysis, we corroborated our initial 
findings by showing that loneliness is linked to SCB, but not to 
SCC, both in the novel replication sample of 271 nonclinical indi-
viduals and in the pooled sample of 523 individuals. Given the 
clear two-factor structure of social cognitive measures observed 
in the current data, the findings provide robust evidence that 
while objective social isolation is linked to objective SCC, no such 
link can be found for subjective feelings of loneliness. At the same 
time, SCB, as measured by specific tendencies to appraise oth-
ers’ actions and intentions in a self-threatening manner, may be 
linked to both objective social isolation and subjective perception 
of one’s relationships as lacking.

Secondly, we investigated the trajectories linking overt social 
cognitive outcomes with implicit processes indicated by DDM 
parameters. In line with previous findings highlighting the role of 
the DDM drift rate (v) as a reliable marker of perceptual learn-
ing processes (Liu and Watanabe 2012), working memory and 
reasoning (Schmiedek et al. 2007), and cognitive control (Span-
gler et al. 2022), we found a positive association between drift 
rate (v) and SCC in participants. A more complex trajectory was, 
however, observed for the association between DDM parameters 
and SCB: in line with previous reports suggesting that nondeci-
sion time (t0) may be linked to bias measures in clinical anxiety 
(Price et al. 2019), we found a positive relationship between non-
decision time (t0) in threat-related trials and SCB in participants. 
However, when no threat was present (neutral–neutral block of 
trials), participants’ SCB was predicted by their information pro-
cessing capacity, as indicated by drift rate (v), not by nondecision 
processes, including attentional engagement with social stimuli, 
as indicated by nondecision time (t0).

By its very definition, cognitive bias may be defined as a “sys-
tematic error in judgment and decision-making (…) which can be 
due to cognitive limitations, motivational factors, and/or adap-
tations to natural environments” (Mata 2012, p. 531). Thus, we 
hypothesize that, while in the presence of threat-related stimuli, 
high levels of SCB may reflect the tendency to be more captured 
by salient stimuli; under no-threat circumstances it may simply 
reflect participants’ tendency to use simplified heuristics in social 
situations due to their reduced social information processing 
capacity.

Finally, by introducing DDM parameters into the model, 
we were able to link objective and perceived social isolation 
with latent cognitive processes signified by such parameters. 
First, we found an indirect relationship linking information

processing capacity, as indicated by drift rate (v), with objective 
social isolation via SCC, which may indicate a bilateral associa-
tion between information capacity and actual opportunities for 
social interaction. Furthermore, a two-fold relationship between 
loneliness and DDM parameters was found. First, loneliness 
was negatively linked to nondecision time (t0), which suggests 
that participants with higher levels of chronic loneliness may 
exhibit facilitated processing of social stimuli independently of 
its salience. However, in the absence of a nonsocial control task, it 
cannot be concluded whether this effect represents an increased 
orienting specifically toward social stimuli, which could be con-
gruent with evolutionary accounts of loneliness (Cacioppo and 
Cacioppo 2018) or generalized alternations of perceptual decision-
making mechanisms in lonely individuals. Secondly, the opposite 
indirect effect, with PSI being positively linked to nondecision 
time (t0) via SCB, was also found in the presence of threat-related 
stimuli. This finding suggests that two opposite-direction effects 
may link PSI with nondecision time (t0) in the presence of negative 
social stimuli, which may account for previous contradictory find-
ings regarding the association between loneliness and attentional 
bias to threats (Spithoven et al. 2017).

Taken together, the current findings provide a robust and repli-
cable model linking social isolation variables with social cognitive 
mechanisms in nonclinical participants. Using a computational 
modeling approach in loneliness research, we were able to dif-
ferentiate between implicit processes associated with informa-
tion processing efficiency and nondecision processes associated 
with vigilance toward salient stimuli. This way, we were able 
to provide two complementary accounts of how SCB may arise 
either due to the increased propensity to engage with salient 
social stimuli or to decreased information processing capac-
ity dependent on the presence or absence of potential social 
threats. Finally, we provided evidence that loneliness is asso-
ciated with nondecision time, both directly and indirectly, via 
SCB. Importantly, we demonstrated that in the presence of social 
threats, these two associations have opposite effects, resulting 
in suppression. Explicit behavioral or self-report measures can 
be thus insufficient to fully grasp the cognitive mechanisms of
loneliness.

Still, several limitations of the current study should be noted: 
first, due to the construction of our sample and inclusion of a 
subgroup of participants with either very low or very high lone-
liness scores, the distribution of the loneliness may not be fully 
representative of the general sample. Secondly, methodological 
concerns have been raised with regard to the use of the dot-probe 
paradigm to study attentional processes (Kappenman et al. 2014); 
thus, the current results should be replicated across different 
paradigms. Finally, given the wealth of literature on neural bases 
of attentional bias, the current investigation could be extended 
to examine the extent to which DDM parameters are linked with 
actual neural processes underlying cognitive computations (Price 
et al. 2019, Mąka et al. 2023).
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