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Abstract

To date, psychological research that relies on natural language processing (NLP) has
borrowed largely unmodified tools from computer science, often overlooking psychologi-
cal nuances that are crucial to realizing their full potential for the field. This dissertation
aims to correct this pitfall by creating new NLP methods tailored to psychological in-
quiry, addressing domain-specific concerns such as ecological validity, construct bias, and
measurement fidelity, thereby opening new avenues for theory, application, and measure-
ment in affective science.

The first study shows that the fundamental structure of emotion can be recovered directly
from everyday language. Using 58 000 Reddit posts tagged with 28 emotions, it builds un-
supervised numerical emotion representations and submits them to principal-component
analysis. By demonstrating that the circumplex model emerges organically from natural
discourse, the study tackles the domain-specific concern of whether laboratory-derived
structures generalise to “in-the-wild” expression and provides a blueprint for theorists
to mine large corpora for latent psychological dimensions, expanding both theorical and
exploratory potential of text-based studies.

The second study extends affective-norm databases with transformer models fine-tuned
on existing ratings. The resulting models predict a range of word-level affective indices for
unseen words with correlations up to r = 0.95 on the test set in English and comparably
high scores in five other languages. In doing so, it addresses the practical bottleneck
of sparse normative data - a core domain-specific limitation - and introduces automated
extrapolation and stimuli-descent procedures that enable researchers to design better-
controlled experiments.

The third study audits social bias in a novel Polish sentiment model. Regression analyses
reveal that a politician’s gender and party affiliation account for up to 66% of the variance
in predicted valence—an effect rooted in the annotators’ personal biases. By empirically
exposing how supervised NLP pipelines can silently propagate psychologically relevant
social and political biases, the work opens new methodological avenues for diagnosing and
correcting such biases, thereby safeguarding the integrity of psychological measurement
and scientific conclusions.

The fourth study introduces the Semantic Propagation Graph Neural Network, an ex-
plainable sentiment model designed to retain accuracy while curbing social bias. By
“blinding” the network to word identity and letting the emotional information of singular
words flow only through syntactic links, the model approaches transformer-level perfor-
mance and significantly reduces prediction bias, demonstrating that high accuracy and
fairness can coexist. This architecture directly addresses the domain-specific concern of
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balancing validity with ethical neutrality and offers a potential method of tracking how
emotional meaning propagates through syntax, broadening future applications of graph-
based modelling in psychology.

Collectively, these four studies contribute a vetted battery of exploratory, predictive,
diagnostic, and corrective methods that enable psychologists to investigate mind and
behaviour through text while guarding against the methodological and ethical pitfalls
of off-the-shelf NLP tools. Together they respond to pressing domain-specific challenges
- ecological validity, normative coverage, bias mitigation, and interpretability - while
opening fresh trajectories for future psychological theory, experimental application, and
large-scale, text-based measurement.

Keywords: Emotion Research, Natural Language Processing, Affective Norm Extrapo-
lation, Social Bias in Sentiment Analysis, Psychological Methods
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Streszczenie

Dotychczasowe badania psychologiczne wykorzystujące przetwarzanie języka naturalnego
(NLP) w dużej mierze zapożyczały gotowe narzędzia z informatyki, często pomijając psy-
chologiczne niuanse, które są kluczowe dla pełnego wykorzystania ich potencjału w tej
dziedzinie. Niniejsza dysertacja ma na celu skorygowanie tego niedopatrzenia, tworząc
nowe metody NLP dostosowane do potrzeb psychologii i uwzględniające specyficzne dla
niej kwestie, takie jak trafność ekologiczna, stronniczość konstruktu i wierność pomiaru,
otwierając tym samym nowe możliwości teoretyczne, praktyczne i pomiarowe w psy-
chologii emocji.

Pierwsze badanie pokazuje, że podstawową strukturę emocji można odtworzyć bezpośred-
nio z codziennego języka. Korzystając z 58 000 postów z Reddita oznaczonych 28 emoc-
jami, stworzono nienadzorowane, numeryczne reprezentacje emocji i poddano je analizie
głównych komponentów składowych. Dwa pierwsze komponenty odtwarzają klasyczne
wymiary walencji i pobudzenia, co dowodzi, że kołowy model emocji Russella wyła-
nia się organicznie z naturalnego dyskursu; badanie to dotyka problemu czy struktury
wywiedzione z laboratorium generalizują się na język „in-the-wild”, dostarczając jed-
nocześnie metody do wydobywania ukrytych wymiarów psychologicznych z dużych kor-
pusów i poszerzając zarówno potencjał teoretyczny, jak i eksploracyjny psychologicznych
badań z użyciem tekstu.

Drugie badanie rozszerza bazy norm afektywnych przy użyciu modeli transformerów
dostrojonych na podstawie istniejących ocen. Stworzone modele przewidują szereg wskaź-
ników afektywnych na poziomie słów dla niewidzianych wcześniej wyrazów, osiągając ko-
relacje do r = 0,95 z zestawem testowym w języku angielskim i porównywalnie wysokie
wyniki w pięciu innych językach. Badanie to rozwiązuje praktyczny problem niedoboru
danych normatywnych – częsty problem dziedziny – i wprowadza zautomatyzowane proce-
dury ekstrapolacji oraz algorytm „stimuli-descent”, które pozwalają badaczom dobierać
semantycznie dopasowane pary słów różniące się wyłącznie na docelowych wymiarach,
ułatwiając projektowanie lepiej kontrolowanych eksperymentów.

Trzecie badanie audytuje uprzedzenia społeczne w nowym polskim modelu sentymentu.
Analizy regresyjne ujawniają, że płeć polityka i przynależność partyjna wyjaśniają do 66%
wariancji przewidywanej walencji - efekt zakorzeniony w osobistych uprzedzeniach anota-
torów. Empiryczne ukazanie, w jaki sposób nadzorowane modele NLP mogą propagować
psychologicznie ważne uprzedzenia społeczne i polityczne, otwiera nowe ścieżki metodolog-
iczne do ich diagnozowania i korygowania, ulepszając rzetelność pomiaru psycholog-
icznego oraz wniosków naukowych.

Czwarte badanie przedstawia Semantic Propagation Graph Neural Network – wyjaś-
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nialny model sentymentu zaprojektowany tak, aby zachować wysoką dokładność predykcji
przy jednoczesnym ograniczeniu propagowanych uprzedzeń społecznych. „Oślepiając”
sieć na tożsamość słów i pozwalając, by informacja emocjonalna pojedynczych wyrazów
rozprzestrzeniała się wyłącznie przez powiązania syntaktyczne, model osiąga wydajność
zbliżoną do transformerów, a jednocześnie znacząco redukuje uprzedzenia w predykcjach,
dowodząc, że wysoka dokładność i bezstronność nie wykluczają się nawzajem. Architek-
tura ta bezpośrednio odpowiada na problem równoważenia trafności i neutralności ety-
cznej oraz oferuje narzędzie do śledzenia, jak znaczenie emocjonalne rozchodzi się w struk-
turze składniowej, poszerzając przyszłe możliwości zastosowania modelowania grafowego
w psychologii.

Łącznie te cztery badania dostarczają zweryfikowanego zestawu metod eksploracyjnych,
predykcyjnych, diagnostycznych i korekcyjnych, które umożliwiają psychologom badanie
umysłu i zachowania poprzez tekst, jednocześnie unikając metodologicznych i etycznych
pułapek gotowych narzędzi NLP. Razem odpowiadają na palące wyzwania specyficzne
dla dyscypliny – trafność ekologiczna, pokrycie normatywne, ograniczanie stronniczości i
interpretowalność – otwierając zarazem nowe ścieżki dla przyszłej teorii psychologicznej,
zastosowań eksperymentalnych oraz szeroko zakrojonych, pomiarów bazujących na tekś-
cie.
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General Introduction

This dissertation critically evaluates and expands the methodological toolkit for studying
emotions in text by introducing advanced machine learning (ML) and natural language
processing (NLP) methods tailored specifically for psychological research. Whereas pre-
vious work often relied on off-the-shelf sentiment-analysis tools, the studies presented
here develop custom approaches that tackle three key psychological challenges: (1) miti-
gating biases introduced by annotators, (2) extrapolating affective word norms for more
comprehensive coverage of emotional vocabulary, and (3) creating exploratory tools that
reveal how psychological phenomena are reflected in everyday language. These innova-
tions capitalize on the ecological validity of unprompted, naturalistic text—an important
step beyond traditional self-report measures. Thanks to the use of unsupervised meth-
ods, they let the data “speak for itself,” thereby reducing dependence on pre-existing
theories when exploring emotional constructs. Further, because text is widely available
online, these approaches help overcome issues of small sample sizes and low statistical
power that often plague psychological studies. By blending techniques such as word em-
beddings, transformer-based architectures, and graph neural networks, this thesis offers
a more data-driven mode of discovery, crafting new tools of scientific inquiry, refining
the way we extrapolate affective norms, and mitigating the social biases that can distort
sentiment analysis results. Ultimately, this work is a step towards a greater adoption of
ML and NLP methods within the psychological paradigm.

NLP methods differ in many ways from the tools that psychologists are classically ac-
customed to. The standard distinction of quantitative vs. qualitative approaches breaks
down when applied to them. They constitute a type of middle-step between the two, of-
fering quantification while at the same time often requiring qualitative interpretation, and
benefiting from manual qualitative validation. Given the often-wide mismatch between
the paradigms adopted by the proponents of quantitative vs. qualitative research, NLP
methods may offer a middle ground between the two, fostering holistic approaches. The
bright promises are, however, well counterbalanced by the limitations of these novel tools.
Many NLP models struggle with explainability, functioning as black boxes which can be
too complex to effectively probe for the details of what exact computations they conduct
underneath – a problem to a large extent unfamiliar to psychologists whose analytical
toolbox often stops at the level of Structural Equation Modeling. Beyond that, text data
also comes with a high inherent portion of noise, where only a part of the information it
conveys is relevant to what psychologists want to study – something possibly unheard of
to people working with carefully crafted psychometric tools. These idiosyncrasies, if NLP
methods are to be widely adopted in psychology, researchers have to learn how to deal
with, and I hope that my dissertation will also constitute a small step in that direction.
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Given that NLP methods can be viewed as novel due to the significant developments that
took place in this field over the last decade and a half, some psychologists might look at
them as foreign to the psychological paradigm. In the introduction to this dissertation,
I will try to argue to the contrary. Psychological science has long been interested in
the study of language, and its endeavors aimed at analyzing it computationally have
a long history, which I intend to summarize on the following pages in order to better
contextualize my research. This brief historical insert will be followed by an overview of
contemporary NLP methods as well as a section devoted to current psychological research
conducted with their use. Finally, a section outlining NLP based psychological research
focusing on emotions will precede a summary of the four articles constituting this thesis.
The final discussion will integrate the findings of the articles included in this dissertation
and attempt to situate the NLP methodology within the wider psychological paradigm,
considering its advantages as well as limitations and tracing new research directions.

Brief History of Text Analysis in Psychological Science

While many of the significant advances in the field of Natural Language Processing are
very recent and haven’t yet been widely adopted by mainstream psychology (e.g., Vaswani
et al., 2017), the idea of quantifying language in psychological science is relatively old
(Allport, 1942; Allport et al., 1953; Baldwin, 1942). For example, as early as in 1942
Baldwin used a corpus of 301 personal letters to create a matrix of co-occurrences of
different topical themes (e.g. money, health) and attitudes (e.g., favorable, unfavorable)
by hand with the aim to identify the main “personal structures” of the author (Baldwin,
1942). The main problem with this and other similar studies was that the quantification
of text had to be done by hand, leading to long hours of counting words and expres-
sions. This was no longer the case by 1966 when a team at the Massachusetts Institute of
Technology published an algorithm that performed the calculations automatically (Stone,
1966). This tool, named The General Inquirer (GI) used large lexicons with words anno-
tated with regards to their emotional load, expressiveness, language type (e.g. Academic,
Economic etc.), object types (e.g. food, tool etc.) and many other taxonomies to quan-
tify the context of natural language by computing their frequencies. While the tool was
dedicated for use by a broader range of social scientists, the original publication included
whole chapters dedicated to personality psychology including an analysis of the structure
of personality from letters; clinical psychology with inquiries into psychotic language and
therapeutic transcripts; and social psychology with an analysis of suicide notes, reports
written by African field work volunteers, and inquiries into the nature of the self-perceived
identity of college students. The software itself, however, wasn’t widely adopted, owing in
large part to the difficulty of use. A review of the GI concludes “Unless the investigator
is willing to make a long-term commitment to research with computers, the use of the



WORDS, VECTORS, AND FEELINGS 11

General Inquirer system is not to be recommended at this time.” (Psathas, 1969, p. 174).

The next big breakthrough in computer-assisted text analysis was inspired by the research
of Walter Weintraub, who documented that people with depression consistently use more
first-person singular pronouns such as I, and me than nondepressed people (Weintraub,
1981, 1989). This idea of analyzing the frequencies of function words to infer psychologi-
cal phenomena gained traction over the next 20 years when a team of scientists developed
a well-known psychological tool called Linguistic Inquiry and Word Count (LIWC) (J. W.
Pennebaker, 2001; Tausczik & Pennebaker, 2010). LIWC worked in a very similar way
to its predecessor, the GI, by counting words from preassembled dictionaries. However,
the process of dictionary creation, and their focus changed over time. Currently, after
several revisions of the original software LIWC (Boyd et al., 2022; J. Pennebaker et al.,
2007; J. W. Pennebaker, 2001; J. W. Pennebaker et al., 2015), the newest version pro-
vides metrics for over 100 categories, split roughly into summary variables (e.g., word
count, analytic thinking related words, emotional tone, words per sentence), linguistic
dimensions (e.g., personal pronouns, determiners, prepositions, negations), psychological
processes (e.g., drives, affect, prosocial behavior, friends related words), and the expanded
dictionary (e.g., words related to politics, work, economics, mental health, need fulfill-
ment, time orientation). Each of these metrics has been assembled in a multiple-stage
process from manual dictionary assembly to internal consistency tests on test corpora,
providing a sense of their psychometric reliability (Boyd et al., 2022).

The LIWC psychometric tool gave rise to a multitude of studies, the most popular LIWC
paper being cited more than seven thousand times (Boyd & Schwartz, 2021; Tausczik
& Pennebaker, 2010). The authors of the tool explained this rise in popularity by two
factors. One of them was the advent of personal computing, and the other the validity of
their approach – the focus on earlier ignored function words such as “the”, “he”, “is” etc.
Indeed, previous studies have failed to achieve satisfactory performance, with regards to
manual coders ground truth, using General Inquirer based content words (words carrying
lexical meaning such as nouns, verbs, adjectives, and most adverbs) (Smith, 1968). A
potentially related setback of content word-based metrics is their relative sparsity in
text, when compared to function word-based ones. While only some texts might contain
words related to content-based categories such as work and economics, nearly all texts
will contain a high degree of function words, providing greater granularity of analysis.
LIWC therefore offered a performant, easy to use research tool with relatively high degree
of objectivity – especially when compared to manual scoring.

Despite LIWC’s popularity, from the perspective of currently available tools for language
analysis, its dictionary-based approach might seem a bit dated. For example, when it
comes to emotion detection, machine learning based systems vastly outperform purely



WORDS, VECTORS, AND FEELINGS 12

dictionary-based approaches (Widmann & Wich, 2023). The creators of LIWC were aware
of this shift, having pointed out themselves that “LIWC represents only a transitional text
analysis program in the shift from traditional language analysis to a new era of language
analysis.” (Tausczik & Pennebaker, 2010, p. 38). The decade and a half between 2010
and 2025 (the current date) brought about many significant inventions in the field of
text analysis, now more often referred to as natural language processing. Starting from
word embeddings which allowed researchers to numerically encode words and documents
in a manner that allowed for high classification performance as well as the computation
of similarity scores, going through convolutional neural networks, and the transformer
revolution initiated by the famous paper “Attention Is All You Need” by Vaswani and
associates 2017, accelerated by the publication of the ChatGPT chatbot by OpenAI in
2022 which began the Large Language Models era. This decade and the subsequent years
were nothing short of revolutionary for the text analysis and its repercussions are not yet
fully realized with a constant output of new publications discussing their responsible use
within the academia (e.g., Sohail & Zhang, 2025). The spirit of the moment was well
encapsulated in a recent review of the field of NLP in psychology in the following words
“The secrets of language are being unlocked in new and exciting ways, and we sit at the
cusp of an absolutely revolutionary shift in how we conduct social scientific research.”
(Boyd & Schwartz, 2021, p. 33).

An Overview of the Main Tools in Natural Language Processing

Before examining contemporary research in psychological text analysis, it is essential to
understand the fundamental tools that have enabled the shift from traditional linguistic
quantification to modern computational approaches. One of the most consequential de-
velopments in the last decade has been the increase in our ability to encode language into
continuous, multidimensional numerical representations. While methods that achieved
the same goal such as Latent Semantic Analysis (Landauer & Dumais, 1997), existed long
before, their application was limited due to computational constraints. Contemporary
methods, unlike earlier lexicon-based methods, which relied on predefined word lists and
categorical mappings, capture latent semantic relationships between words, allowing for
a more nuanced representation of meaning. Such representations enable researchers to
compute semantic similarity, cluster texts based on thematic content and predict psy-
chological attributes. They also form the foundation for more complex models, including
deep learning architectures that now drive state-of-the-art NLP research. However, these
methods did not emerge overnight. The first breakthroughs in numerical representations
of language came with word embeddings – most notably Word2Vec (Mikolov et al., 2013)
– ushering in a new era of text analysis by transforming words into dense vector spaces
that encode meaning beyond simple frequency counts.
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The Word2Vec algorithm (Mikolov et al., 2013) is based on the distributional hypothe-
sis, which states that words appearing in similar contexts tend to have related meanings
(Firth, 1957; Harris, 1954). For example, in a large corpus, the word lemon is more
likely to appear near other citruses like orange and grapefruit than near unrelated words
like chair. This statistical pattern encodes semantic relationships, but directly storing
co-occurrence frequencies in a large matrix is impractical due to memory constraints
and sparsity. To overcome this, Word2Vec learns dense vector representations of words
by training a neural network to predict words based on their context. This model can
then be used to input specific words and output their numerical representations, where
words with similar meanings are positioned closer together in the embedding space (i.e.
their vectors are similar). This property allows Word2Vec embeddings to capture not
only direct word associations but also more abstract relationships, such as analogies
(king − man + woman ≈ queen) (Church, 2017). Furthermore, the technique can be
extended to create embeddings for longer texts such as whole documents (Le & Mikolov,
2014). The effectiveness of the Word2Vec model in encoding useful semantic information
is evidenced by its widespread adoption for various tasks that require a numerical rep-
resentation of text, including sentiment analysis, topic modeling, information retrieval,
and psychological text analysis (Johnson et al., 2024).

While Word2Vec is an ingenious method of creating useful numerical representations
of natural language, much like LIWC, it constituted only a transitional stage in the
development of natural language processing tools. Its main setback was the inability to
model how words change their meanings based on the context in which they are used—this
includes negations, polysemy, and nuanced shifts in meaning that arise from syntactic
or semantic dependencies within a sentence (Widmann & Wich, 2023). For example,
Word2Vec assigns the same vector representation to a word like bank regardless of whether
it refers to a financial institution or the side of a river, and it fails to capture how negations
like not happy differ from happy in sentiment. These limitations highlighted the need for
more sophisticated models that could dynamically adjust word meanings based on their
surroundings. It led to the development of transformer-based models, such as BERT
(Devlin et al., 2018) and GPT (Radford et al., 2018), which introduced mechanisms
capable of analyzing words in relation to all other words in a sentence, paragraph, or
even an entire document.

The key breakthrough that enabled these models was the introduction of attention mech-
anisms, particularly self-attention, which allowed NLP models to dynamically assess the
importance of each word in a sequence relative to all others (Vaswani et al., 2017). Unlike
previous approaches, which relied on fixed-length context windows or strictly linear word
relationships, attention allows a model to recognize dependencies between words across
long passages of text, capturing meaning that might be spread across multiple sentences.
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This makes it possible for a model to understand that, for example, in the sentence She
didn’t like the movie because it was too slow, the word slow is what explains didn’t like,
ensuring a more contextual interpretation. The transformer architecture introduced by
Vaswani et al. 2017 leveraged multiple layers of stacked attention mechanisms, allowing
each layer to refine its understanding of word relationships at different levels of abstrac-
tion. This stacking process became the foundation of modern NLP models, with GPT-2,
GPT-3, and GPT-4 progressively increasing the number of attention layers and training
data, leading to a dramatic leap in language modeling capabilities. The culmination of
this approach is seen in Large Language Models (LLMs) like GPT-4 and its successors,
where massive datasets and deep architectures enable a model to generate, summarize,
and analyze text with unprecedented accuracy and coherence (Kocoń et al., 2023). These
advancements represent not just an improvement in computational text analysis but a
fundamental shift in how artificial intelligence processes and understands human lan-
guage.

The power of transformer-based models comes not just from their ability to model long-
range dependencies but also from their architecture, which relies on encoder-decoder
structures trained in parallel. In broad terms, an encoder processes input text, con-
verting it into a compact numerical representation (embedding), while a decoder uses
this information to generate output text, whether in translation, summarization, or text
completion (Kocoń et al., 2023). During training, these two components are optimized
simultaneously, learning to predict masked words or reconstruct input sequences based
on context. Crucially, encoders – when trained independently – can be used in much
the same way as Word2Vec, extracting fixed-length numerical embeddings of words, sen-
tences, or entire documents. These embeddings can then serve as inputs for a range of
downstream tasks, including clustering, semantic similarity measurement, and regression-
based prediction using additional layers of weight matrices, often referred to as regression
heads (Widmann & Wich, 2023). This approach allows researchers to train models that
predict psychological attributes, detect emotions, and analyze text with greater quanti-
tative rigor.

While this short overview has highlighted key milestones in NLP over the last decade
and a half – from early Latent Semantic Analysis approaches, to word embeddings, at-
tention, and large language models – it is by no means exhaustive. Other significant
advancements, such as convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and their improved variants like long short-term memory networks (LSTMs)
and gated recurrent units (GRUs), have also played a role in the evolution of natural
language processing as we see it today (see Perumal et al., 2024, for a comprehensive re-
view). However, rather than providing a comprehensive historical account, this overview
is intended mainly to establish a computational methodological context for the research
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presented in this dissertation by focusing on the most influential developments in con-
temporary NLP.

Contemporary Research in Psychological Text Analysis

While some researchers have focused on advancing text-processing methods, others have
started using them to investigate psychological phenomena. For example, word embed-
dings have been shown to be extremely useful in identifying cultural biases in text. By
assembling lists of words related to the two poles of the bias dimension that researchers
want to study (e.g., men vs. women) they can then compare the distance of different
words (e.g., specific occupations) to those poles probing the degree of bias in the meaning
encoded by the model (see Durrheim et al., 2023, for a comprehensive review). One study
showed that gender bias tested this way with regards to such words as nurse, librarian,
and housekeeper had a significant correlation (r=0.5) with the percentage of women work-
ing in these occupations (Garg et al., 2018). A different study showcased the convergent
validity of word embedding based measures for probing intergroup attitudes and biases
by demonstrating that they capture intergroup associations in a manner consistent with
Implicit Association Test (IAT) results (Kurdi et al., 2019). More generally, word embed-
ding based word similarity measures have been shown to reliably reflect human ratings
of word associations (Hofmann et al., 2018). They have also been successfully applied to
the prediction of multiple psychological constructs from text. Some notable avenues of
research here include the prediction of psychological disorders based on text from social
media (Couto et al., 2025), personality dimensions (Alsini et al., 2024), brain activations
(Oota et al., 2018), as well as high-level human judgments across diverse behavioral do-
mains (Richie et al., 2019), and emotions (Widmann & Wich, 2023).

The development of transformer-based models and their derivatives – LLMs brought
about not only a rise in the prediction accuracy of psychological constructs (Widmann &
Wich, 2023), but also applications related to text generation. For example, transformers
have been used to generate novel, psychometrically valid items for psychological ques-
tionnaires (Hommel et al., 2022). New research explores the possibility of integration of
LLMs in psychotherapeutic work in a way that will minimize the obvious dangers asso-
ciated with leaving the responsibility for the state of a psychotherapeutic client within
the hands of a computer algorithm (Hodson & Williamson, 2024; Hommel et al., 2022).
Other studies have focused on estimating to what extent the text generated by LLMs
corresponds to that generated by a human on a range of different cognitive tasks. LLMs
have been successful in completing various theory of mind tasks (Kosinski, 2024), emo-
tion intelligence tests (X. Wang et al., 2023), and various others cognitive tasks (Binz &
Schulz, 2023).
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This seeming resemblance to the performance of humans prompted research projects
trying to use the transformer architecture to create computational models of human
cognition by finetuning an LLM on data from various psychological experiments (Binz
et al., 2024). While the preliminary results showed that such a model generalizes well
to unseen cognitive tasks and that its internal numerical representations are to a degree
aligned to aggregated neural activity of human participants taking part in the same
experiments (R2 of more than 0.1 with variable results depending on the exact layer
from which the representations were extracted), these results should be viewed with a
significant degree of caution. The main optimization criterion for these models depends on
being able to correctly guess the next word in a line of text, not to realistically reconstruct
the mechanisms through which the human brain produces language (Sobieszek & Price,
2022). This means that while LLMs produce language that is hard to distinguish from
that of a human, it might very well be doing this using completely different computational
structures than those utilized by the human brain. At the same time, even the unlikely
prospect of being able to create authentic artificial models of human cognition brings
with it immense research potential, at the same time motivating the valuable study of
the differences and similarities between LLMs and humans.

While NLP tools offer exciting opportunities, enabling the modeling of text in ways that
previous generations of psychologists could only dream of, this power comes at a cost.
The task of numerically encoding text while preserving its meaning is computationally
complex. Our brains also perform this task, yet we still lack a clear understanding of how
human cognition processes and produces language (Roland, 2023). Likewise, we struggle
to fully comprehend the numerical transformations that machine learning models apply
to textual data. This opacity is known as the black box problem—we cannot fully trace or
interpret every computation within a machine learning model, limiting the potential for
forming explanatory theories. However, techniques of making machine learning models
more transparent are constantly evolving as researchers are experimenting with different
explainable machine learning architectures (Burkart & Huber, 2021). Still, even with
limited explainability, this limitation does not preclude their usefulness in psychology.
Similarly to how earlier tools like LIWC provided interpretable linguistic metrics despite
performance problems, NLP-based models can be leveraged for psychological research by
focusing on the outputs they generate rather than the underlying computations, however
only after the algorithms that produced them have been appropriately vetted for validity
and reliability. Where necessary, the black box nature of these models should be consid-
ered as a limitation during research.
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Natural Language Processing in the Study of Emotions

One particularly salient field that intersects psychology and natural language processing
is the study of human emotions as they are expressed in language. Researchers in this
domain usually have three approaches to choose from: 1) lexicon-based emotion analysis,
where words from text are checked against a lexicon that has predefined associations with
emotional categories or dimensions, allowing for a rule-based classification of emotional
content (Hills et al., 2019); 2) machine learning approaches, where models are being
trained to predict emotion based on annotated datasets, learning statistical patterns in
textual features to generalize emotion recognition across different contexts (Widmann &
Wich, 2023); 3) large language models, where texts are inputted into LLMs to ask them
about the emotions that are being expressed, utilizing their pre-trained knowledge to infer
and describe emotional content (Kocoń et al., 2023). The main qualities distinguishing
these three approaches are accuracy of emotion prediction, ease of application, and the
degree of explainability. While the latter two are an undeniable asset of lexicon methods,
machine learning models outcompete them significantly in terms of precision. Large
Language Models, on the other hand, approach the accuracy levels of their less complex
machine learning counterparts, and are relatively easy to use with the help of available
API’s (e.g. OpenAI API), but due to their increased complexity can be viewed as even
more black box in their nature (Plisiecki et al., 2024).

These methods were used across various studies to analyze emotional indices of text. For
example, lexicon approaches have been used to study shifts in historical wellbeing by
analyzing the valence of millions of books published across various countries from the
beginning of the 18th century (Hills et al., 2019). While the valence of words written
in books does not directly translate to the wellbeing of people living in the countries
where these books were published, researchers were able to show that their valence met-
ric significantly correlated with the available country well-being data. A different study
analyzed the variation in sentiment expressed across the world on social media during
the outbreak of the COVID-19 pandemic using a machine learning based model. They
were able to show that the outbreak resulted in a steep decline of expressed sentiment
across different geographical areas (J. Wang et al., 2022). Text-inferred emotions have
also been used to identify suicide risk from text messages showing that prior to suicide
attempts people expressed an increase in expressed anger and a lowering of the expres-
sion of positive emotions (Glenn et al., 2020). Yet another study used emotion lexicons
to analyze teachers’ enthusiasm during lessons and showed that teacher’s self-reported
enthusiasm is significantly related to the enthusiasm that they have expressed verbally
during lessons (Frenzel et al., 2025)).

Here it is appropriate to outline what is meant by emotional indices of text, as measuring
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the expressed or conveyed sentiment in text is by no means equivalent to a self-report
on the emotional state of the author. A link nonetheless exists, as shown by studies
that experimentally evoked emotions in participants and then analyzed the texts written
under the influence of those emotions using LIWC (Kahn et al., 2007), with more complex
sentiment analysis systems most likely achieving higher emotional congruence with the
actual internal state of the author. However, it is important to note that texts such as
essays written during an experimental study might be more revealing of the internal state
of the author, as compared to a post on the internet, because the participant is directly
incentivized to convey their emotions, while the internet user freely chooses which part,
if any, of his internal experience to express. Even though assuming that every internet
user is a Machiavellian trickster is a clear exaggeration, researchers have to consider
the social desirability bias, along with other information filters, as being more salient in
real-life text datasets. Practically this usually means that real-life text-data is noisier
than its laboratory counterpart (J. W. Pennebaker, 2022). Another important variable
that influences the emotional indices of text is the perspective from which the text is
viewed. Research showed that texts annotated from the author perspective i.e. “what
emotion is expressed by the author”, receive significantly different ratings than those
annotated from the perspective of the user i.e. “what emotion is conveyed” or “how do
you feel after reading” (Buechel & Hahn, 2017). While this finding might seem obvious,
it has important consequences for how emotional annotations are collected, as research
authors also conclude that authors perspectives achieve higher inter-rater reliability. An
interesting question from the psychological perspective here is to what extent can people
shed their individual perspective and produce emotion ratings that are not biased by
their own attitudes.

While the emotional annotation of text is usually conducted with the goal of creating a
training dataset for a machine learning model, words annotated with regards to affective
dimensions have been widely used as stimuli in cognitive research. Lexicons such as
those created by Imbir 2016, or Warriner and colleagues 2013 contain thousands of words
annotated with regards to dimensions such as valence, arousal, dominance, and many
others. These databases, also known as norms, were used repetitively to prime subjects
with words of specific emotional load (K. Imbir et al., 2023; Scerrati et al., 2022), to
explore the associations between affective dimensions (Warriner, 2014), and as lexicon
bases for sentiment analysis (Ribeiro et al., 2016) and therefore are of great value to
scientific research. They are, however, limited by the size of their lexicon, which contains
only a sample of all the words available in a given language. The task of synthetically
extending the available lexicons has been attempted multiple times, with each consecutive
approach achieving slightly better results (Recchia & Louwerse, 2015; Snefjella & Blank,
2020). It has not, however, been attempted before using transformer-based models, as it
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is done in the second article presented in the current dissertation, perhaps due to their
emphasis on long-form text input.

So far, the presented research focused on producing emotion ratings for different texts and
using these in downstream analysis. This method, while very useful, is clearly limited with
regard to what scientific questions it can answer. In it, vectors that represent semantic
meaning of texts, are distilled to produce ratings for specific emotions. The same vectors
however can also be used as encodings of emotional expression, and analyzed in their
more granular form, without direct distillation. For example, Calder 2001, while not
working directly with text, took pictures of facial emotion expressions and represented
them as vectors of pixels that composed them. After applying Principal Component
Analysis (PCA) to them, he was able to reconstruct the structure of the circumplex
model of affect (Russell, 1980). A parallel example used the similarity of the vectors
created based on the text of items in a big five personality inventory to show that it
reflects the associations between personality factors in human subjects (Casella et al.,
2024). This type of analysis, concerned more with the semantic content of the texts than
with the distilled emotional value is further developed in study number one of the current
dissertation, and offers a new avenue for the study of emotions in text.

Scientific Articles Included in the Dissertation

The papers that constitute this thesis introduce advanced machine learning methods to
the field of psychology of emotions. While to date, the previous studies have mostly used
ready-made tools to conduct their research, this research creates custom methods for
use specifically in psychological research. This uniquely predisposes the work presented
in this thesis to tackle challenges that might not be noticed or paid attention to when
looked at from a different perspective but are important from the psychological perspec-
tive, addressing domain-specific concerns such as ecological validity, construct bias, and
measurement fidelity. These issues are tackled by exploring the problems of personal bias
of the annotators seeping into machine learning models; using transformers to extrap-
olate affective word norms; and creating exploratory tools that can be used to analyze
the reflections of psychological phenomena in text. The research questions guiding the
studies presented in this dissertation are as follows:

1. Article number one: ”Emotion Topology: Extracting Fundamental Components of
Emotions from Text Using Word Embeddings” – Can numerical representations of
discrete emotions (e.g., happiness, anger) extracted from text be used to replicate
previous studies exploring the fundamental structure of emotions?

2. Article number two: “Extrapolation of Affective Norms Using Transformer-Based
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Neural Networks and Its Application to Experimental Stimuli Selection” – Can
machine learning models help psycholinguists in the task of extending available
affective norms for words as well as in applying them in psychological studies?

3. Article number three: “High Risk of Political Bias in Black Box Emotion Inference
Models“– Are black box machine-learning based techniques of text emotion infer-
ence devoid of social biases which might interfere with drawing accurate scientific
conclusions from the studies that employ them?

4. Article number four: “Eradicating Social Biases in Sentiment Analysis using Seman-
tic Blinding and Semantic Propagation Graph Neural Networks” – Is it possible to
design machine learning based sentiment analysis models that do not propagate the
social biases of the annotators that labeled the corpus on which these models were
trained on?

Ultimately, these four research questions tackle real scientific problems on the intersection
of psychology and machine learning. Furthermore, they also effectively pave the way for
future psychological research using this methodology by 1) creating new machine learning
methods that can answer psychological research questions, 2) showing the effectiveness
of advanced machine learning techniques in solving methodological problems related to
psychological research, and 3) identifying and solving the problems related to measure-
ment fidelity associated with the use of black box models. A detailed summary of each
of the four studies follows.

Article Number One - Emotion Topology: Extracting Fundamental Compo-
nents of Emotions from Text Using Word Embeddings

The first study explores whether the fundamental structure of emotions such as the va-
lence and arousal as they are construed in the circumplex model (Russell, 1980) previously
identified through questionnaires and controlled laboratory experiments, can be extracted
directly from natural language using word embeddings (Plisiecki & Sobieszek, 2024). The
study utilized the GoEmotions dataset, which consists of approximately 58,000 Reddit
comments annotated with 28 distinct emotions by human raters. This dataset provided a
rich foundation of naturalistic emotional expressions in text. Rather than relying on pre-
defined theoretical structures, we employed an unsupervised machine learning approach
using Doc2Vec algorithm to create numerical representations (emotion vectors) for each
emotion category based on the semantic content of texts expressing those emotions.

These emotion vectors were then subjected to Principal Component Analysis (PCA) to
identify the underlying dimensions along which emotion expressions naturally vary in
language. The results demonstrate that the first four principal components extracted
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from the text data aligned with the established dimensions from traditional emotion
research. The first component clearly separated emotions along the valence dimension
(positive-negative), with joy, admiration, and gratitude on one end, and disgust, fear,
and sadness on the other. The second component corresponded to arousal, distinguish-
ing high-arousal emotions like surprise and anger from low-arousal emotions like sadness
and caring. The third component resembled the dominance dimension, separating high-
dominance emotions (anger, annoyance) from low-dominance emotions (fear, confusion),
but was significantly noisier than the first two. The fourth component was the hardest
to interpret, having explained the least variance out of the four the patterns it revealed
were very noisy, however it is possible that it identified the unpredictability dimension
of affect. These findings were validated through correlation analysis with established
emotion norms (showing significant correlation of r = 0.31 for valence), qualitative in-
spection of words scoring high and low on each dimension, t-SNE visualization showing
clear clustering by valence, logistic regression confirming the alignment between the first
component and sentiment, and by repeating the analysis on randomly drawn halves of
the dataset.

The study showcases a new method of extracting vectors that relate to psychological phe-
nomena. In terms of findings, while the study was exploratory, it revealed structures that
were similar to classical research on the dimensionality of emotion while using texts that
were written by humans in their “natural habitat”. This finding can be seen as provid-
ing complementary evidence for existing emotion theories while employing a completely
different methodological approach, however this argument would be further strengthened
by a replication on a different dataset.

Article Number Two - Extrapolation of Affective Norms Using Transformer-
Based Neural Networks and Its Application to Experimental Stimuli Selection

The second study addressed the challenge of extending affective norms databases through
the use of machine learning techniques (Plisiecki & Sobieszek, 2023). As already men-
tioned, these databases, constituted by thousands of words annotated with regards to
emotional dimensions like valence, arousal, dominance etc., are limited with respect to
the words that they contain. To overcome this limitation, this study trained transformer-
based neural networks to predict affective norms for novel words. By fine-tuning pre-
trained transformer models (some specifically trained on emotion-recognition tasks), on
available affective norms datasets the study created extrapolation networks capable of pre-
dicting multiple affective dimensions simultaneously. Our model achieved state-of-the-art
results with correlations between predicted and human-rated values reaching r = 0.95 for
valence, r = 0.76 for arousal, r = 0.86 for dominance, r = 0.85 for age of acquisition, and
r = 0.95 for concreteness in English. This represented an improvement of approximately
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∆r = 0.1 across metrics compared to previous methods. The model also performed ex-
cellently across other languages, including Polish, Spanish, Dutch, German, and French.

To examine the limitations and robustness of our approach we have employed targeted
experiments to show that while the model performed well on most words, its accuracy de-
creased slightly (by about 11% on average) for words that deviated significantly from those
in the training database. This finding highlights the importance of using extrapolated
norms as heuristic tools rather than definitive measurements, particularly for uncommon
words. Additionally, the study developed a "stimuli descent algorithm" – a novel method
for selecting experimental stimuli that manipulates specific emotional dimensions while
controlling others. This algorithm is able to provide semantically matched word pairs
that differ primarily in the emotional dimension being studied, thereby reducing the risk
that uncontrolled variables might confound experimental results – providing a useful tool
for experimental stimuli selection.

This work showcases how advanced machine learning techniques can be adapted to serve
psychological research – not by replacing human judgments but assisting them in a way
that acknowledges both the potential and limitations of computational approaches. More-
over, by making these tools available through a web application, the article extends the
availability of these tools to researchers without specialized technical backgrounds.

Article Number Three - High Risk of Political Bias in Black Box Emotion
Inference Models

The third study addresses a critical yet underexplored dimension of bias in machine
learning-based sentiment analysis systems: political bias. While previous research has
documented various social biases in computational models – particularly concerning gen-
der and race (Kiritchenko & Mohammad, 2018) – this study specifically examines how
annotators’ political orientations can systematically influence the performance of emo-
tion inference models in an implicit way, with potentially far-reaching implications for
research that employs these tools (Plisiecki et al., 2025).

Using a previously developed Polish sentiment analysis model, we conducted a compre-
hensive bias audit to assess whether the model’s valence predictions exhibited system-
atic differences based on the political affiliations of mentioned politicians. The analysis
focused on 24 well-known Polish political figures from across the political spectrum, ex-
amining how the model rated both their names in isolation and when embedded within
neutral or politically charged sentences.

The results revealed compelling evidence of political bias. Regression analyses demon-
strated that political affiliation explained approximately 49% of the variance in the
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model’s valence predictions for politicians’ names. When controlling confounding vari-
ables such as gender, this explanatory power increased to 66.5%. These differences were
not randomly distributed but showed systematic patterns aligned with specific political
orientations, as confirmed by permutation tests (p = 0.008 for names, p = 0.049 for
neutral sentences, and p = 0.018 for political sentences). Importantly, the observed bias
could not be explained by general public opinion toward these politicians (as measured
by trust surveys) or by inherent linguistic properties of the texts in which they appeared.
Instead, the bias appeared to originate from the subjective perceptions of the annota-
tion team, despite the annotators being explicitly asked to rate the emotions they see
expressed in the texts, as opposed to those they feel when reading it. This conclusion
was further supported by an experiment in which we pruned the training dataset of all
texts mentioning these politicians and retrained the model. The modified model exhib-
ited significantly reduced bias, although some residual bias persisted, suggesting deeper
associative patterns may also contribute to the effect.

The study’s findings have significant implications for the use of machine learning-based
sentiment analysis in psychological and social science research. Unlike lexicon-based
approaches, which rely on pre-defined word lists evaluated independently of context,
black box supervised models trained on human annotations inherently propagate the
subjective judgments of their annotators – including implicit political biases that may
operate outside of conscious awareness. This propagation creates systematic distortions
that can significantly impact research conclusions. We recommend researchers exercise
caution when using machine learning-based sentiment analysis for psychological research,
particularly in politically sensitive contexts.

Article Number Four - Eradicating Social Biases in Sentiment Analysis using
Semantic Blinding and Semantic Propagation Graph Neural Networks

The fourth study addresses a critical challenge highlighted by the third study: the propa-
gation of social biases from training data to model predictions. To address this problem,
the study introduces the Semantic Propagation Graph Neural Network (SProp GNN),
a novel explainable architecture designed to analyze emotions in text while mitigating
social biases (Plisiecki, 2024). The key innovation is the concept of "semantic blind-
ing"—deliberately limiting the model’s access to specific semantic information that could
introduce unwanted biases. Instead of processing the full semantic content of words, the
model focuses exclusively on syntactic relationships between words and their emotional
values at the individual word level. This approach constitutes a fundamental shift from
traditional machine learning models. While conventional models can learn associations
between specific words (like politicians’ names or gender-specific terms) and emotional
values, the SProp GNN cannot form these direct associations because it does not have
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access to the specific words themselves. Instead, it analyzes how emotional information
flows through the syntactic structure of sentences.

The model was evaluated across three datasets spanning two languages (English and Pol-
ish) and two different emotion prediction tasks (categorical and dimensional). The results
demonstrated that the SProp GNN significantly outperformed lexicon-based alternatives
while approaching the accuracy levels of transformer-based models. Most importantly,
rigorous statistical testing confirmed that the SProp GNN substantially reduced bias com-
pared to transformer models. When tested on political content, the transformer model
showed clear political and gender biases, with these covariates explaining up to 66% of
the variance in valence predictions. In contrast, the SProp GNN showed no significant
association between political affiliation or gender and predicted emotions. Both direct
regression analysis and comparative approaches confirmed this bias reduction.

This work represents an important step toward more ethical and unbiased computational
methods in psychological research, demonstrating that advanced machine learning tech-
niques can be adapted to address concerns about bias while maintaining high performance
for emotion analysis tasks. Due to its explainability, it furthermore allows researchers to
directly probe the pathways of propagation of emotional information through the syntac-
tic structure of the text, potentially opening new avenues for psycholinguistic research.

General Discussion

The introduction of NLP, or computer-based language analysis to psychology has been
repeatedly referred to as constituting a paradigmatic shift in how we conduct science
(Boyd & Schwartz, 2021; J. W. Pennebaker, 2022). The research presented in this thesis
ties well into this argument. Firstly, paper number one offers an new method of quanti-
fying psychological phenomena, by extracting their numerical representations from text.
By relying on text written in an unprompted way by thousands of Reddit users, it pro-
vides a new medium for testing psychological theories, which circumvents the ecological
problems associated with classical psychological studies. This method, given appropriate
data sources, can be applied to other psychological topics, such as personality, where nu-
merical representations, akin to those created slightly less than one hundred years ago by
Baldwin 1942 can be created and analyzed. This approach, however, has one significant
limitation that psychologists will have to grapple with, namely the fact that people do
not always accurately portray their inner experiences when writing text. While having
direct access to people’s thoughts and feelings would be fascinating, the fact that we don’t
does not preclude us from drawing conclusions from the texts they write as at the heart
of the text analysis paradigm (Pennebaker, 2022) lies the assumption that even though a
person might not want to express her real feelings, the words they choose will still reflect
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the things they pay attention to, and similarly to how an eye tracker does, it will rear
scientifically meaningful data.

The second paper shows that machine learning approaches can also be applied to extend
existing psychological studies on the affective load of words, by generating synthetic data.
The important caveat here is that the patterns that the norm extrapolation models have
learned do not have to reflect the actual mechanisms that guide our affective responses to
singular words and therefore should not be treated as equivalent to empirically collected
data. However, they can serve as an exploratory tool for finding interesting patterns,
which can be afterwards validated by empirical studies. By extending available datasets,
and creating an algorithm for picking experimental stimuli, the fruits of this study can
help accelerate psychological research.

The third and the fourth studies are deeply tied together. The third pinpoints a problem,
which can derail the conclusions drawn by studies utilizing sentiment analysis models.
It legitimates the worries associated with using black-box models, showing that they
indeed exhibit biases that can easily go unnoticed when researchers only focus on their
optimization criteria. After all, the performance of these models is measured by the extent
to which they can replicate the emotion labels from the dataset that is used to test them.
However, given the psychological insight that the annotators’ attitudes can influence their
judgement in implicit ways, the most performant models according to those standards
will be exactly those that learn these individual attitudes. This finding called for the
creation of machine learning architectures that take this insight into account, leading
to the fourth study which showcased a novel architecture that is less sensitive to those
individual attitudes. The SProp GNN circumvents social biases associated with specific
entities and ideas by hiding them from the prediction model at training and inference.
By doing this, it is able to learn the general emotional value of texts from the annotators,
while turning a blind eye to their individual implicit attitudes, thereby enabling more
valid psychological insights drawn with the use of sentiment analysis models.

In total, these four studies solve important scientific problems on the intersection of
psychology and machine learning. They create new tools of inquiry, apply advanced
machine learning techniques to solve methodological problems, identify barriers of entry of
black box models into psychological research, and develop techniques that help circumvent
those barriers. Together, this research constitutes a directed push for the wider adoption
of ML and NLP methods in psychological research. The studies presented here would
not be possible without the psychological core on which they were built. From a purely
engineering point of view the exploration of the fundamental components of emotions
using text-based vectors has close to little value. Similarly, the extent of bias shown in
the third study would probably be of little consequence in most commercial applications
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of sentiment analysis, but when amassed in a psychological research database can lead
to false conclusions. These studies therefore also show that while there are applications
for which psychology can just borrow methods from natural language processing, there
is an essential need for machine learning and natural language processing research that
is strictly psychological.



WORDS, VECTORS, AND FEELINGS 27

References

Allport, G. W. (1942). The use of personal documents in psychological science. Social
Science Research Council Bulletin, 49, xix + 210–xix + 210.

Allport, G. W., Bruner, J. S., & Jandorf, E. M. (1953). Personality under social catas-
trophe: Ninety life-histories of the Nazi revolution. Personality in nature, society,
and culture, 436–455.

Alsini, R., Naz, A., Khan, H. U., Bukhari, A., Daud, A., & Ramzan, M. (2024). Using
deep learning and word embeddings for predicting human agreeableness behavior.
Scientific Reports, 14 (1), 29875. https://doi.org/10.1038/s41598-024-81506-8

Baldwin, A. L. (1942). Personal structure analysis: A statistical method for investigating
the single personality [Place: US Publisher: American Psychological Association].
The Journal of Abnormal and Social Psychology, 37 (2), 163–183. https://doi.org/
10.1037/h0061697

Binz, M., Akata, E., Bethge, M., Brändle, F., Callaway, F., Coda-Forno, J., Dayan, P.,
Demircan, C., Eckstein, M. K., Éltető, N., Griffiths, T. L., Haridi, S., Jagadish,
A. K., Ji-An, L., Kipnis, A., Kumar, S., Ludwig, T., Mathony, M., Mattar, M.,
. . . Schulz, E. (2024). Centaur: A foundation model of human cognition [Version
Number: 2]. https://doi.org/10.48550/ARXIV.2410.20268

Binz, M., & Schulz, E. (2023). Using cognitive psychology to understand GPT-3. Pro-
ceedings of the National Academy of Sciences, 120 (6), e2218523120. https://doi.
org/10.1073/pnas.2218523120

Boyd, R. L., Ashokkumar, A., Seraj, S., & Pennebaker, J. W. (2022). The develop-
ment and psychometric properties of LIWC-22. Austin, TX: University of Texas
at Austin, 10. Retrieved February 6, 2025, from https : / / www . researchgate .
net/profile/Ryan- Boyd- 8/publication/358725479_The_Development_and_
Psychometric_Properties_of_LIWC-22/links/6210f62c4be28e145ca1e60b/The-
Development-and-Psychometric-Properties-of-LIWC-22.pdf

Boyd, R. L., & Schwartz, H. A. (2021). Natural Language Analysis and the Psychology
of Verbal Behavior: The Past, Present, and Future States of the Field. Journal
of Language and Social Psychology, 40 (1), 21–41. https : / / doi . org / 10 . 1177 /
0261927X20967028

Buechel, S., & Hahn, U. (2017). Readers vs. Writers vs. Texts: Coping with Different
Perspectives of Text Understanding in Emotion Annotation. Proceedings of the
11th Linguistic Annotation Workshop, 1–12. https://doi.org/10.18653/v1/W17-
0801

Burkart, N., & Huber, M. F. (2021). A Survey on the Explainability of Supervised Ma-
chine Learning. Journal of Artificial Intelligence Research, 70, 245–317. https :
//doi.org/10.1613/jair.1.12228

https://doi.org/10.1038/s41598-024-81506-8
https://doi.org/10.1037/h0061697
https://doi.org/10.1037/h0061697
https://doi.org/10.48550/ARXIV.2410.20268
https://doi.org/10.1073/pnas.2218523120
https://doi.org/10.1073/pnas.2218523120
https://www.researchgate.net/profile/Ryan-Boyd-8/publication/358725479_The_Development_and_Psychometric_Properties_of_LIWC-22/links/6210f62c4be28e145ca1e60b/The-Development-and-Psychometric-Properties-of-LIWC-22.pdf
https://www.researchgate.net/profile/Ryan-Boyd-8/publication/358725479_The_Development_and_Psychometric_Properties_of_LIWC-22/links/6210f62c4be28e145ca1e60b/The-Development-and-Psychometric-Properties-of-LIWC-22.pdf
https://www.researchgate.net/profile/Ryan-Boyd-8/publication/358725479_The_Development_and_Psychometric_Properties_of_LIWC-22/links/6210f62c4be28e145ca1e60b/The-Development-and-Psychometric-Properties-of-LIWC-22.pdf
https://www.researchgate.net/profile/Ryan-Boyd-8/publication/358725479_The_Development_and_Psychometric_Properties_of_LIWC-22/links/6210f62c4be28e145ca1e60b/The-Development-and-Psychometric-Properties-of-LIWC-22.pdf
https://doi.org/10.1177/0261927X20967028
https://doi.org/10.1177/0261927X20967028
https://doi.org/10.18653/v1/W17-0801
https://doi.org/10.18653/v1/W17-0801
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1613/jair.1.12228


WORDS, VECTORS, AND FEELINGS 28

Calder, A. J., Burton, A., Miller, P., Young, A. W., & Akamatsu, S. (2001). A principal
component analysis of facial expressions. Vision Research, 41 (9), 1179–1208. https:
//doi.org/10.1016/S0042-6989(01)00002-5

Casella, M., Luongo, M., Marocco, D., Milano, N., & Ponticorvo, M. (2024). LLM em-
beddings on test items predict post hoc loadings in personality tests. Retrieved
April 8, 2025, from https://www.iris.unina.it/handle/11588/961475

Church, K. W. (2017). Word2Vec. Natural Language Engineering, 23 (1), 155–162. https:
//doi.org/10.1017/S1351324916000334

Couto, M., Perez, A., Parapar, J., & Losada, D. E. (2025). Temporal Word Embeddings
for Early Detection of Psychological Disorders on Social Media. Journal of Health-
care Informatics Research. https://doi.org/10.1007/s41666-025-00186-9

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding [Version Number:
2]. https://doi.org/10.48550/ARXIV.1810.04805

Durrheim, K., Schuld, M., Mafunda, M., & Mazibuko, S. (2023). Using word embeddings
to investigate cultural biases. British Journal of Social Psychology, 62 (1), 617–
629. https://doi.org/10.1111/bjso.12560

Firth, J. R. (1957). A synopsis of linguistic theory 1930-1955. Studies in Linguistic Anal-
ysis, Special Volume/Blackwell.

Frenzel, A. C., Kleen, H., Marx, A. K. G., Sachs, D. F., Baier-Mosch, F., & Kunter, M.
(2025). Is it in their words? Teachers’ enthusiasm and their natural language in
class–A sentiment analysis approach. British Journal of Educational Psychology,
bjep.12734. https://doi.org/10.1111/bjep.12734

Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100
years of gender and ethnic stereotypes. Proceedings of the National Academy of
Sciences, 115 (16). https://doi.org/10.1073/pnas.1720347115

Glenn, J. J., Nobles, A. L., Barnes, L. E., & Teachman, B. A. (2020). Can Text Mes-
sages Identify Suicide Risk in Real Time? A Within-Subjects Pilot Examination
of Temporally Sensitive Markers of Suicide Risk. Clinical Psychological Science,
8 (4), 704–722. https://doi.org/10.1177/2167702620906146

Harris, Z. S. (1954). Distributional Structure. WORD, 10 (2-3), 146–162. https://doi.org/
10.1080/00437956.1954.11659520

Hills, T. T., Proto, E., Sgroi, D., & Seresinhe, C. I. (2019). Historical analysis of national
subjective wellbeing using millions of digitized books [Publisher: Nature Publish-
ing Group]. Nature Human Behaviour, 3 (12), 1271–1275. https ://doi .org/10.
1038/s41562-019-0750-z

Hodson, N., & Williamson, S. (2024). Can Large Language Models Replace Therapists?
Evaluating Performance at Simple Cognitive Behavioral Therapy Tasks. JMIR AI,
3, e52500. https://doi.org/10.2196/52500

https://doi.org/10.1016/S0042-6989(01)00002-5
https://doi.org/10.1016/S0042-6989(01)00002-5
https://www.iris.unina.it/handle/11588/961475
https://doi.org/10.1017/S1351324916000334
https://doi.org/10.1017/S1351324916000334
https://doi.org/10.1007/s41666-025-00186-9
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.1111/bjso.12560
https://doi.org/10.1111/bjep.12734
https://doi.org/10.1073/pnas.1720347115
https://doi.org/10.1177/2167702620906146
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1038/s41562-019-0750-z
https://doi.org/10.1038/s41562-019-0750-z
https://doi.org/10.2196/52500


WORDS, VECTORS, AND FEELINGS 29

Hofmann, M. J., Biemann, C., Westbury, C., Murusidze, M., Conrad, M., & Jacobs,
A. M. (2018). Simple Co-Occurrence Statistics Reproducibly Predict Association
Ratings. Cognitive Science, 42 (7), 2287–2312. https://doi.org/10.1111/cogs.12662

Hommel, B. E., Wollang, F.-J. M., Kotova, V., Zacher, H., & Schmukle, S. C. (2022).
Transformer-Based Deep Neural Language Modeling for Construct-Specific Auto-
matic Item Generation. Psychometrika, 87 (2), 749–772. https://doi.org/10.1007/
s11336-021-09823-9

Imbir, K., Pastwa, M., & Walkowiak, M. (2023). The Role of the Valence, Arousing
Properties and Subjective Significance of Subliminally Presented Words in Affec-
tive Priming. Journal of Psycholinguistic Research, 52 (1), 33–56. https://doi.org/
10.1007/s10936-021-09815-x

Imbir, K. K. (2016). Affective Norms for 4900 Polish Words Reload (ANPW_r): As-
sessments for Valence, Arousal, Dominance, Origin, Significance, Concreteness,
Imageability and, Age of Acquisition. Frontiers in Psychology, 7, 1081. https :
//doi.org/10.3389/fpsyg.2016.01081

Johnson, S. J., Murty, M. R., & Navakanth, I. (2024). A detailed review on word embed-
ding techniques with emphasis on word2vec. Multimedia Tools and Applications,
83 (13), 37979–38007. https://doi.org/10.1007/s11042-023-17007-z

Kahn, J. H., Tobin, R. M., Massey, A. E., & Anderson, J. A. (2007). Measuring Emotional
Expression with the Linguistic Inquiry and Word Count. The American Journal
of Psychology, 120 (2), 263–286. https://doi.org/10.2307/20445398

Kiritchenko, S., & Mohammad, S. M. (2018, May). Examining Gender and Race Bias in
Two Hundred Sentiment Analysis Systems [arXiv:1805.04508 [cs]]. https://doi.
org/10.48550/arXiv.1805.04508

Kocoń, J., Cichecki, I., Kaszyca, O., Kochanek, M., Szydło, D., Baran, J., Bielaniewicz,
J., Gruza, M., Janz, A., Kanclerz, K., Kocoń, A., Koptyra, B., Mieleszczenko-
Kowszewicz, W., Miłkowski, P., Oleksy, M., Piasecki, M., Radliński, Ł., Wojtasik,
K., Woźniak, S., & Kazienko, P. (2023). ChatGPT: Jack of all trades, master of
none. Information Fusion, 99, 101861. https://doi.org/10.1016/j. inffus.2023.
101861

Kosinski, M. (2024). Evaluating large language models in theory of mind tasks. Proceed-
ings of the National Academy of Sciences, 121 (45), e2405460121. https://doi.org/
10.1073/pnas.2405460121

Kurdi, B., Mann, T. C., Charlesworth, T. E. S., & Banaji, M. R. (2019). The rela-
tionship between implicit intergroup attitudes and beliefs. Proceedings of the Na-
tional Academy of Sciences, 116 (13), 5862–5871. https://doi.org/10.1073/pnas.
1820240116

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowl-

https://doi.org/10.1111/cogs.12662
https://doi.org/10.1007/s11336-021-09823-9
https://doi.org/10.1007/s11336-021-09823-9
https://doi.org/10.1007/s10936-021-09815-x
https://doi.org/10.1007/s10936-021-09815-x
https://doi.org/10.3389/fpsyg.2016.01081
https://doi.org/10.3389/fpsyg.2016.01081
https://doi.org/10.1007/s11042-023-17007-z
https://doi.org/10.2307/20445398
https://doi.org/10.48550/arXiv.1805.04508
https://doi.org/10.48550/arXiv.1805.04508
https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/10.1073/pnas.2405460121
https://doi.org/10.1073/pnas.2405460121
https://doi.org/10.1073/pnas.1820240116
https://doi.org/10.1073/pnas.1820240116


WORDS, VECTORS, AND FEELINGS 30

edge. Psychological Review, 104 (2), 211–240. https : //doi . org/10 .1037/0033 -
295X.104.2.211

Le, Q., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents
[ISSN: 1938-7228]. Proceedings of the 31st International Conference on Machine
Learning, 1188–1196. Retrieved March 22, 2025, from https://proceedings.mlr.
press/v32/le14.html

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word
Representations in Vector Space [Version Number: 3]. https://doi.org/10.48550/
ARXIV.1301.3781

Oota, S. R., Manwani, N., & Bapi, R. S. (2018). fMRI Semantic Category Decoding
Using Linguistic Encoding of Word Embeddings [Series Title: Lecture Notes in
Computer Science]. In L. Cheng, A. C. S. Leung, & S. Ozawa (Eds.), Neural
Information Processing (pp. 3–15, Vol. 11303). Springer International Publishing.
https://doi.org/10.1007/978-3-030-04182-3_1

Pennebaker, J., Chung, C., Ireland, M., Gonzales, A., & Booth, R. (2007). The Develop-
ment and Psychometric Properties of LIWC2007.

Pennebaker, J. W. (2001). Linguistic inquiry and word count: LIWC 2001.
Pennebaker, J. W. (2022). Computer-based language analysis as a paradigm shift. In

Handbook of language analysis in psychology (pp. 576–587). The Guilford Press.
Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. (2015). The development

and psychometric properties of LIWC2015. Retrieved February 6, 2025, from https:
//repositories.lib.utexas.edu/items/705e81ca-940d-4c46-94ec-a52ffdc3b51f

Perumal, T., Mustapha, N., Mohamed, R., & Shiri, F. M. (2024). A Comprehensive
Overview and Comparative Analysis on Deep Learning Models. Journal on Arti-
ficial Intelligence, 6 (1), 301–360. https://doi.org/10.32604/jai.2024.054314

Plisiecki, H. (2024). Eradicating Social Biases in Sentiment Analysis using Semantic
Blinding and Semantic Propagation Graph Neural Networks [Version Number:
3]. https://doi.org/10.48550/ARXIV.2411.12493

Plisiecki, H., Koc, P., Flakus, M., & Pokropek, A. (2024). Predicting Emotion Intensity in
Polish Political Texts: Comparing Supervised Models and Large Language Models
in a Resource-Poor Language [Version Number: 1]. https://doi.org/10.48550/
ARXIV.2407.12141

Plisiecki, H., Lenartowicz, P., Flakus, M., & Pokropek, A. (2025). High risk of political
bias in black box emotion inference models. Scientific Reports, 15 (1), 6028. https:
//doi.org/10.1038/s41598-025-86766-6

Plisiecki, H., & Sobieszek, A. (2023). Extrapolation of affective norms using transformer-
based neural networks and its application to experimental stimuli selection. Be-
havior Research Methods, 56 (5), 4716–4731. https://doi.org/10.3758/s13428-023-
02212-3

https://doi.org/10.1037/0033-295X.104.2.211
https://doi.org/10.1037/0033-295X.104.2.211
https://proceedings.mlr.press/v32/le14.html
https://proceedings.mlr.press/v32/le14.html
https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/10.1007/978-3-030-04182-3_1
https://repositories.lib.utexas.edu/items/705e81ca-940d-4c46-94ec-a52ffdc3b51f
https://repositories.lib.utexas.edu/items/705e81ca-940d-4c46-94ec-a52ffdc3b51f
https://doi.org/10.32604/jai.2024.054314
https://doi.org/10.48550/ARXIV.2411.12493
https://doi.org/10.48550/ARXIV.2407.12141
https://doi.org/10.48550/ARXIV.2407.12141
https://doi.org/10.1038/s41598-025-86766-6
https://doi.org/10.1038/s41598-025-86766-6
https://doi.org/10.3758/s13428-023-02212-3
https://doi.org/10.3758/s13428-023-02212-3


WORDS, VECTORS, AND FEELINGS 31

Plisiecki, H., & Sobieszek, A. (2024). Emotion topology: Extracting fundamental compo-
nents of emotions from text using word embeddings. Frontiers in Psychology, 15,
1401084. https://doi.org/10.3389/fpsyg.2024.1401084

Psathas, G. (1969). The general inquirer: Useful or not? Computers and the Humanities,
3 (3), 163–174. https://doi.org/10.1007/BF02401609

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language
understanding by generative pre-training [Publisher: San Francisco, CA, USA].
Retrieved May 25, 2025, from https://www.mikecaptain.com/resources/pdf/
GPT-1.pdf

Recchia, G., & Louwerse, M. M. (2015). Reproducing affective norms with lexical co-
occurrence statistics: Predicting valence, arousal, and dominance [Place: United
Kingdom Publisher: Taylor & Francis]. The Quarterly Journal of Experimental
Psychology, 68 (8), 1584–1598. https://doi.org/10.1080/17470218.2014.941296

Ribeiro, F. N., Araújo, M., Gonçalves, P., André Gonçalves, M., & Benevenuto, F. (2016).
SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis
methods. EPJ Data Science, 5 (1), 23. https://doi.org/10.1140/epjds/s13688-016-
0085-1

Richie, R., Zou, W., & Bhatia, S. (2019). Predicting High-Level Human Judgment Across
Diverse Behavioral Domains (S. Vazire & S. Vazire, Eds.). Collabra: Psychology,
5 (1), 50. https://doi.org/10.1525/collabra.282

Roland, P. E. (2023). How far neuroscience is from understanding brains. Frontiers in
Systems Neuroscience, 17, 1147896. https://doi.org/10.3389/fnsys.2023.1147896

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social
Psychology, 39 (6), 1161–1178. https://doi.org/10.1037/h0077714

Scerrati, E., D’Ascenzo, S., Nicoletti, R., Villani, C., & Lugli, L. (2022). Assessing Inter-
personal Proximity Evaluation in the COVID-19 Era: Evidence From the Affective
Priming Task. Frontiers in Psychology, 13, 901730. https://doi.org/10.3389/fpsyg.
2022.901730

Smith, M. S. (1968). The computer and the TAT. Journal of School Psychology, 6 (3),
206–214. https://doi.org/10.1016/0022-4405(68)90017-4

Snefjella, B., & Blank, I. (2020). Semantic norm extrapolation is a missing data problem
[Publisher: PsyArXiv]. https://doi.org/https://doi.org/10.31234/osf.io/y2gav

Sobieszek, A., & Price, T. (2022). Playing Games with Ais: The Limits of GPT-3 and
Similar Large Language Models. Minds and Machines, 32 (2), 341–364. https :
//doi.org/10.1007/s11023-022-09602-0

Sohail, A., & Zhang, L. (2025). Using large language models to facilitate academic work in
the psychological sciences. Current Psychology. https://doi.org/10.1007/s12144-
025-07438-2

Stone, P. J. (1966). The General Inquirer: A computer approach to content analysis.

https://doi.org/10.3389/fpsyg.2024.1401084
https://doi.org/10.1007/BF02401609
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://doi.org/10.1080/17470218.2014.941296
https://doi.org/10.1140/epjds/s13688-016-0085-1
https://doi.org/10.1140/epjds/s13688-016-0085-1
https://doi.org/10.1525/collabra.282
https://doi.org/10.3389/fnsys.2023.1147896
https://doi.org/10.1037/h0077714
https://doi.org/10.3389/fpsyg.2022.901730
https://doi.org/10.3389/fpsyg.2022.901730
https://doi.org/10.1016/0022-4405(68)90017-4
https://doi.org/https://doi.org/10.31234/osf.io/y2gav
https://doi.org/10.1007/s11023-022-09602-0
https://doi.org/10.1007/s11023-022-09602-0
https://doi.org/10.1007/s12144-025-07438-2
https://doi.org/10.1007/s12144-025-07438-2


WORDS, VECTORS, AND FEELINGS 32

Tausczik, Y. R., & Pennebaker, J. W. (2010). The Psychological Meaning of Words:
LIWC and Computerized Text Analysis Methods. Journal of Language and Social
Psychology, 29 (1), 24–54. https://doi.org/10.1177/0261927X09351676

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
& Polosukhin, I. (2017). Attention Is All You Need [Version Number: 7]. https:
//doi.org/10.48550/ARXIV.1706.03762

Wang, J., Fan, Y., Palacios, J., Chai, Y., Guetta-Jeanrenaud, N., Obradovich, N., Zhou,
C., & Zheng, S. (2022). Global evidence of expressed sentiment alterations during
the COVID-19 pandemic. Nature Human Behaviour, 6 (3), 349–358. https://doi.
org/10.1038/s41562-022-01312-y

Wang, X., Li, X., Yin, Z., Wu, Y., & Liu, J. (2023). Emotional intelligence of Large
Language Models. Journal of Pacific Rim Psychology, 17, 18344909231213958.
https://doi.org/10.1177/18344909231213958

Warriner, A. B. (2014, November). The Interplay of Language and Emotion: Using Af-
fective Norms to Explore Word Recognition, Motivation, and Lexicon [Thesis] [Ac-
cepted: 2014-10-28T15:51:09Z]. Retrieved April 8, 2025, from https://macsphere.
mcmaster.ca/handle/11375/16227

Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and
dominance for 13,915 English lemmas. Behavior Research Methods, 45 (4), 1191–
1207. https://doi.org/10.3758/s13428-012-0314-x

Weintraub, W. (1989). Verbal behavior in everyday life.
Weintraub, W. (1981). Verbal behavior: Adaptation and psychopathology. Springer Pub-

lishing Company.
Widmann, T., & Wich, M. (2023). Creating and Comparing Dictionary, Word Embed-

ding, and Transformer-Based Models to Measure Discrete Emotions in German
Political Text. Political Analysis, 31 (4), 626–641. https://doi.org/10.1017/pan.
2022.15

https://doi.org/10.1177/0261927X09351676
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.1038/s41562-022-01312-y
https://doi.org/10.1038/s41562-022-01312-y
https://doi.org/10.1177/18344909231213958
https://macsphere.mcmaster.ca/handle/11375/16227
https://macsphere.mcmaster.ca/handle/11375/16227
https://doi.org/10.3758/s13428-012-0314-x
https://doi.org/10.1017/pan.2022.15
https://doi.org/10.1017/pan.2022.15


Frontiers in Psychology 01 frontiersin.org
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This exploratory study examined the potential of word embeddings, an automated 
numerical representation of written text, as a novel method for emotion 
decomposition analysis. Drawing from a substantial dataset scraped from a 
Social Media site, we constructed emotion vectors to extract the dimensions 
of emotions, as annotated by the readers of the texts, directly from human 
language. Our findings demonstrated that word embeddings yield emotional 
components akin to those found in previous literature, offering an alternative 
perspective not bounded by theoretical presuppositions, as well as showing 
that the dimensional structure of emotions is reflected in the semantic structure 
of their text-based expressions. Our study highlights word embeddings as a 
promising tool for uncovering the nuances of human emotions and comments 
on the potential of this approach for other psychological domains, providing a 
basis for future studies. The exploratory nature of this research paves the way 
for further development and refinement of this method, promising to enrich 
our understanding of emotional constructs and psychological phenomena in a 
more ecologically valid and data-driven manner.

KEYWORDS

word embeddings, emotion decomposition, natural language processing, valence, 
arousal

1 Introduction

In the study of core components of emotions various methods have been used. A large 
number of studies focus on the core components of emotions by using controlled 
environments. Here, participants either annotate distinct stimuli, such as photos of facial 
expressions (Calder et al., 2001; Fontaine et al., 2002, 2007; Schlosberg, 1952; Shaver et al., 
1987) or assess their emotional experiences through structured questionnaires (Nowlis and 
Nowlis, 1956; Feldman, 1995; Stanisławski et al., 2021). These studies have explored areas such 
as facial expressions, emotion terms, and self-reported emotional experiences. Except for self-
reports, participants annotate stimuli based on their emotional resonance. For instance, a 
photo capturing a broad Duchenne smile might receive a maximum rating for inferred 
happiness (Calder et al., 2001; Ekman et al., 1990; Tseng et al., 2014). Other research, following 
the Multidimensional Scaling (MDS) approach, requires participants to gauge the emotional 
similarity among various stimuli, such as musical pieces (Dellacherie et al., 2011), emotion 
terms (Bliss-Moreau et al., 2020), and facial expressions (Woodard et al., 2022).
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To analyze these core components, researchers frequently utilize 
Principal Component Analysis (PCA) (e.g., Calder et  al., 2001; 
Feldman, 1995; Fontaine et al., 2007; Lampier et al., 2022). At its 
core, PCA condenses intricate datasets by converting correlated 
variables into a smaller set of uncorrelated ones, known as principal 
components. These components highlight the primary patterns 
within the data (Abdi and Williams, 2010). When applied to 
emotional experience studies, PCA effectively pinpoints 
foundational dimensions like valence. It does so by transforming 
extensive emotional descriptors (e.g., scores from an emotional 
experience questionnaire) into distinct, principal emotional axes 
(e.g., positive–negative). This method provides researchers with a 
refined lens to understand the complex landscape of 
human emotions.

Through statistical analysis, psychologists have proposed various 
models of the core structure of emotional experience. These models 
often suggest two primary dimensions: valence (e.g., happiness vs. 
sadness) and arousal (e.g., stressed vs. relaxed) (Russell, 1980; 
Stanisławski et  al., 2021). Some models also introduce additional 
dimensions like potency/dominance, which gauges how in control 
individuals feel over their environment and others (e.g., anger—high 
dominance; fear—low dominance), and unpredictability, reflecting the 
consistency of one’s surroundings in eliciting emotions (e.g., 
surprise—high unpredictability; calmness—low unpredictability) 
(Fontaine et al., 2007; Mehrabian, 1996; Russell and Mehrabian, 1977). 
Nonetheless, certain researchers continue to advocate for a strictly 
2-dimensional perspective (Bliss-Moreau et al., 2020).

The dimensional framework, despite some disagreements about 
its structure, has gained substantial support in the psychological 
community. It’s been incorporated into neuroscientific research, 
offering fresh perspectives on emotional processing in the brain 
(Posner et al., 2005) and the origins of depression (Barrett et al., 2016). 
This approach has proven effective in gauging affect in physical 
activities (for a comprehensive review, refer to Evmenenko and 
Teixeira, 2022), advertising (Wiles and Cornwell, 1991), various 
priming and linguistic investigations (Imbir, 2016; Imbir et al., 2020; 
Syssau et al., 2021; Yao et al., 2016), and in machine learning (Islam 
et al., 2019; Martínez-Tejada et al., 2020; Nicolaou et al., 2011). While 
an exhaustive discussion of the dimensional model’s applications is 
beyond this article’s scope, we want to emphasize its broad appeal, not 
only within psychology but also in other scientific disciplines.

Our paper introduces a data-driven method that utilizes word 
embeddings (a machine learning technique) to analyze emotional 
expression as communicated and perceived through the medium of 
text and extract its core dimensions from vast amounts of text that 
reflect real-world contexts. Innovations in word embeddings facilitate 
the quantitative examination of extensive text datasets (Mikolov et al., 
2013a,b). By automating insight extraction from texts, these 
embeddings have the potential to replicate previous findings in a new 
medium—unprompted written text—garnering more objective 
evidence for their validity. Furthermore, they can process vast text 
volumes, expanding the impact of conclusions drawn (Jackson et al., 
2022). In subsequent sections, we offer a comprehensive review of 
word embeddings and discuss their potential benefits. We  then 
transition into the details of our current study. Prior to presenting the 
methodology, we  also establish clear definitions for the concepts 
associated with word embeddings, ensuring they are well anchored in 
emotion research.

Word embeddings are a technique popularized by Mikolov et al. 
(2013a,b) which makes it possible to quantify natural language. It 
computes separate strings of numbers (usually between 100 and 500 
long), known as vectors, for each unit of text that is to be analyzed. 
Most often the units are words (hence “word” embeddings), and so 
each unique word in a given text gets assigned a vector which encodes 
its relation to the other words and can therefore be used to analyze its 
properties (Gutiérrez and Keith, 2019). In the case where one wants 
to analyze whole documents, composed of multiple words, separate 
vectors can be created for each of them as well (Le and Mikolov, 2014).

Some of the popular traits of these vectors are that, given that they 
were derived from a large enough batch of text (the more the better), 
their similarity (calculated through a formula called cosine similarity) 
correlates with human judgements about the similarity of the words 
that they relate to (Jatnika et al., 2019). Their results are therefore 
similar to the results obtained through the MDS method, providing a 
similarity metric that replaces human judgments made in 
the laboratory.

Importantly, these word embeddings have been used repeatedly 
to predict (using simple techniques, such as linear regressions) 
different meanings of text snippets. These use cases included, among 
others, predicting diseases based on the International Classification of 
Diseases (ICD-10) and the Unified Medical language System (UMLS) 
(Khattak et al., 2019), identifying cultural biases (Charlesworth et al., 
2021; Durrheim et al., 2023), human judgements (Richie et al., 2019), 
moral values (Lin et al., 2018), and emotions and sentiments (Al-
Amin et al., 2017; Jia, 2021; Plisiecki and Sobieszek, 2023; Widmann 
and Wich, 2022). This last application of word embeddings is 
especially important for the current study as it shows that word 
embeddings encode information that correlates with emotional 
meanings. This case is further strengthened by van Loon and Freese’s 
(2023) research, which has directly shown that affective meaning can 
be  recovered from word embeddings by successfully predicting 
evaluation, potency, and activity profiles of words. Al-Amin and his 
team (2017) predicted positive vs. negative sentiment of texts collected 
from Bengalese blogging websites. Jia (2021) classified both basic 
emotions and overall polarity in Chinese texts. Plisiecki and Sobieszek 
(2023) showed that leveraging advanced word embeddings makes it 
possible to predict a range of emotional indices for singular words in 
different languages (English, German, French, Polish, Dutch). 
Widmann and Wich (2022) prepared a comparison of different ways 
of creating word embeddings on German texts for the prediction of 
basic emotions, comparing both newer and more classical approaches 
of constructing them and showed that all of them have significant 
predictive ability. These examples stand as evidence that word 
embeddings encode emotional information. They are therefore good 
sources of data for the current application.

Think of creating word embeddings as mapping words to a 
multidimensional space where the location of each word is determined 
by its context, or the words with which it often coexists. Imagine a 
large book, where every unique word is listed. The creation of word 
embeddings begins with each word starting at a random location in 
this space. As we move through the book, sentence by sentence, the 
algorithm adjusts the positions of the words in this space based on 
their context. For instance, if “cat” and “kitten” often appear in similar 
contexts, they gradually move closer together. Conversely, “cat” and 
“refrigerator”, unlikely to share much context, would drift apart. This 
process is repeated multiple times (known as iterations) on the entire 
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book, refining the word positions each time. After sufficient iterations, 
the distances and angles between word vectors represent different 
types of semantic and syntactic similarities. For instance, words with 
similar meanings would be  closer together, and the direction of 
specific relations (such as verb tense or gender) would be consistent. 
This way, word embeddings provide a rich, numeric interpretation of 
word relationships, useful in various language-related tasks (Mikolov 
et al., 2013a,b).

These word-level embeddings can be extended to document-level 
representations. Le and Mikolov (2014) introduced the Paragraph 
Vector, or Doc2Vec, an extension of word2vec that computes a vector 
for a sentence or document, not only for individual words. The 
technique involves training a model where the document vector, along 
with the word vectors, work together to predict the surrounding 
words in a document, thereby capturing the semantic essence of the 
entire text. Just like single words move closer or further in this 
numerical space based on their cooccurrences with other words, so 
too now whole documents get embedded in places where they fit best 
based on the similarities and differences in their overall content and 
context. This document-level vector enables researchers to compare 
and contrast entire documents, opening up further avenues in natural 
language processing tasks.

In this study we explore whether similar emotional components 
to those identified in previous literature (e.g., Fontaine et al., 2002), 
can be extracted from a large text dataset using word embeddings. We 
reverse the process of annotation and make use of a dataset in which 
the participants did not describe emotions using questionnaires, but 
rather spotted them in an already existing array of natural language 
expressions. While describing human emotions using questionnaires 
is not an everyday task for human beings, and therefore is not natural 
to them, potentially leading to issues of ecological validity, the action 
of inferring emotions from language is an everyday, nearly constant 
exercise that humans engage in. Furthermore, this specific type of 
judging others’ emotions—through text written by a stranger—is a 
very common occurrence in today’s digital world, and therefore is of 
high importance to the research community. Using word embeddings, 
we represent the annotated texts in an emergent numerical space.

In the following text, we  will use a specific terminology for 
describing different concepts related to word embeddings, as applied 
to the study of emotion. This is done to enhance clarity and provide 
psychologists with a strong conceptual grasp of the following study. 1. 
To describe the multidimensional space, within which numerical 
vectors reside, we will use the term Emotional Space. 2. The vectors 
representing the emotional content of texts will be called Emotion 
Vectors. 3. When vectors do not correspond to specific emotions, but 
to words or single documents we  will use either Word Vectors or 
Document Vectors, to designate them.

2 Method

2.1 Dataset

The GoEmotions dataset was developed by a team of 
researchers at Google to study human emotions within the realm 
of machine learning (Demszky et  al., 2020). It includes 58,000 
Reddit comments annotated with regard to 28 unique emotions, 

totaling over 210,000 annotations. The data came from a Reddit 
data dump, sourced from the reddit-data-tools project. The data 
dump included all comments from 2005 to January 2019. As the 
Reddit platform is composed of different communities of users, 
called Subreddits, all communities with at least 10 k comments 
were chosen for the analysis. The comments from different 
subreddits were then further balanced. First, the number of 
comments from the most popular subreddits was capped at the 
median Subreddit count. The comments were then randomly 
sampled for annotation.

Because the Reddit community does not reflect the globally 
diverse population, due to a skew towards offensive language, the toxic 
comments were removed from the dataset using a pre-defined list of 
offensive words and the help of manual annotators. This was done 
before the sampling process. According to best practices the 
researchers have modified the dataset by removing stop words and 
stemming the words in order to transform them into their base form 
(e.g., “fearsome” into “fear”).

2.2 Emotion taxonomy

The emotion taxonomy for annotation was created as a result of 
three steps: 1. Manual annotation of a small subset of the data to 
ensure proper coverage of emotions expressed in the text. 2. Review 
of psychological literature on basic emotions (Plutchik, 1980; Cowen 
and Keltner, 2020; Cowen et al., 2019). 3. Removal of the emotions 
that were deemed to have a high overlap to limit the overall number 
of emotions.

The resulting list of emotions included: admiration, approval, 
annoyance, gratitude, disapproval, amusement, curiosity, love, 
optimism, disappointment, joy, realization, anger, sadness, confusion, 
caring, excitement, surprise, disgust, desire, fear, remorse, 
embarrassment, nervousness, pride, relief, grief.

2.3 Annotation

Three raters were assigned to each comment, and asked to select 
those emotions, which they believed were expressed in the text. All 
three raters were native English speakers from India. The authors here 
rely on the results of a cross-cultural study showing that the emotion 
judgments of Indian and US English speakers largely occupy the same 
dimensions (Cowen et al., 2019). In the case where the annotators 
judged the text to be especially difficult to rate, they were able to 
choose not to assign any emotion to it. Whenever there was no 
agreement between the raters on a specific example, additional raters 
were assigned to it until each document was annotated at least twice 
with regards to the same emotional label.

2.4 Analysis

The analysis aims to represent the natural expression of emotions 
contained in the GoEmotions dataset in the word-embedding-based 
emotion space. The breakdown of the analysis is presented in 
Figure 1.
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2.4.1 Applying Doc2Vec to create numerical 
representations of emotions

The Doc2Vec algorithm (Le and Mikolov, 2014) was used to 
create emotion vectors for each emotion in the dataset. Documents 
that corresponded to a given emotion were concatenated into long 
documents, and then, during training, singular emotion vectors were 
created for each of these long documents. For a document to be 
judged as corresponding to a given emotion it was enough for it to be 
classified as so once. So, if a document was classified by two raters 
into two different emotions, this document then complemented two 
different concatenated series. This approach was chosen because 
applying majority voting retains less information from the annotators, 
and judging emotions is a highly subjective task where the objective 
truth can be rarely established. First, the words in each document 
were transformed into word vectors via a word embedding method, 
capturing the information embedded in each word. Then, these word 
vectors were used to build an emotion vector using the Doc2Vec 
algorithm, which treats the document as another word in the 
sentence and assigns numerical representations to it (Le and Mikolov, 
2014). This resulted in a distinct numerical representation for each 
emotion that encapsulated the underlying sentiment, and thematic 
nuances present in the corresponding documents. Supplementary 
analyses of the distribution of document vectors and their relation to 
label centroids, including top-k nearest centroid accuracy, conducted 
to explore the resultant document vector space are presented in the 
Supplementary Material for the interested reader.

2.4.2 Hyperparameter optimization
Because the Doc2Vec algorithm has a range of hyperparameters that 

had to be tuned in order to achieve the best representations, separate 
emotion spaces were created using different hyperparameter values. The 
hyperparameters that were taken into consideration were the collocation 
window size (5, 10, 20 words), minimum word count (10, 40, 60 words), 
embedding size (100, 200, 300, 400, 500, 600, 700, 800, 900 units). Every 
combination of the above parameters was tested. We chose the model 
that minimized the L1 distance between the emotion vectors to increase 
the likelihood that the emotion vectors represented meanings of 
emotions—as they would be more similar to each other if they truly 
belonged to the semantic space that describes emotions—while at the 
same time ensuring it did not impose any further predefined notions 
onto the contents of the vectors.

2.4.3 Principal component analysis (PCA)
The emotion vectors were then subjected to a Principal Component 

Analysis, in line with the previous literature on decomposing emotions 
(Fontaine et al., 2002, 2007), which finds the dimensions along which 
the emotional representations (emotion vectors) vary the most and 
situates the emotions along them. The PCA was applied to the emotion 
vectors. Horn’s parallel analysis was used to determine the number of 
components that can be  retained. This method compares the 
eigenvalues obtained from the factor analysis to those from a randomly 
generated dataset. If the eigenvalues from the factor analysis exceed 
those from the randomly generated dataset, the factors are considered 
significant and are retained.

2.4.4 Graphical representation and correlation 
analysis

Emotion vectors were then plotted on a graph, and the words 
corresponding to the word vectors were tested for correlation with a set 
of words annotated with regard to their emotional loads along the first 
components (stipulated to be related to the components reported in the  
previous literature, Gendron and Feldman Barrett, 2009). In order to 
inspect these components, the word vectors retrieved from the dataset 
were transformed to align with the components identified by the PCA.

2.4.5 Qualitative inspection
Because only some words present in the vocabulary were related to 

emotions, a qualitative inspection of only the highest and lowest-ranking 
words on each of the components could obscure the nature of the 
recovered dimensions, as it is the emotion related words that have the 
highest face validity when it comes to examining emotional dimensions. 
To circumvent this problem an external word embedding model with 
300-dimensional vectors (Dadas, 2019) was used to sample the 
vocabulary for words related to the concept of emotions. The cosine 
similarity of word vectors was used to recover only 500 words most 
similar to the word vector for the word “emotion” based on the cosine 
similarity between the vectors that represented them. The resulting 
words were then subjected to the PCA transformation again, so that they 
could be evaluated qualitatively.

2.4.6 t-Distributed stochastic neighbor embedding 
(t-SNE) analysis

To complement the Principal Component Analysis (PCA) and 
further explore the structure of the emotion vectors, we  used 

FIGURE 1

The steps of the analysis.
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t-Distributed Stochastic Neighbor Embedding (t-SNE). t-SNE is a 
nonlinear technique that helps visualize high-dimensional data by 
preserving local relationships, making it useful for identifying clusters 
and patterns that PCA might miss. For our analysis, we  first 
standardized the emotion vectors to ensure that all features contributed 
equally. We applied t-SNE with the following settings: 2 components, 
a perplexity of 5, and a learning rate of 10. The random state was set 
to 22 to ensure that the results could be replicated. The perplexity was 
set to 5, the lower bound of the suggested values, due to the low 
number of emotion vectors. Perplexity, which balances attention 
between local and global aspects of the data, typically needs to 
be higher for larger datasets to capture broader relationships; however, 
for smaller datasets like ours, a lower perplexity is recommended as it 
helps maintain meaningful local structures (Van der Maaten and 
Hinton, 2008). The learning rate was set to 10, as this value provided 
a stable convergence during the embedding process, ensuring that the 
visualization accurately represented the underlying data patterns.

2.4.7 Logistic regression on documents
To confirm the alignment of the PCA components with the 

emotional dimension of Valence, we  recoded the original 
GoEmotions dataset from 28 emotions into positive and negative 
labels. The emotions classified as positive were admiration, love, 
gratitude, amusement, realization, optimism, curiosity, excitement, 
caring, joy, approval, pride, desire, and relief. The emotions 
classified as negative were sadness, disapproval, disappointment, 
annoyance, confusion, disgust, remorse, anger, grief, 
embarrassment, surprise, fear, and nervousness. If a text was 
labeled with a different emotion it was dropped. Here again, all text 
labels were taken into consideration and so if two annotators 
annotated a given text as joy, these were treated as separate rows. 
This approach was chosen over majority voting to preserve as much 
information from the original annotations as possible, given the 
subjective nature of emotion labeling. The final dataset consisted of 
155,663 text—label pairs. We  then transformed the document 
vectors from the Doc2Vec model using the PCA model previously 
fit on the emotion vectors, resulting in a four-dimensional vector 
for each document. These vectors were subsequently used in a 
logistic regression with the positive/negative labels as the 
dependent variable.

3 Results

3.1 Horn’s parallel analysis

The Horn’s parallel analysis indicated that the first seven 
components were significant and should be retained (see Figure 2). 
Even though seven components were significant, we chose to only 
inspect the first four of them, as after that number, the percentage of 
explained variance drops sharply.

3.2 Visualizing the emotion vectors

To visualize the emotion vectors regarding the components 
recovered by the PCA, we plotted them on two 2-dimensional graphs. 
The visualizations can be found in Figures 3, 4.

3.3 Correlation results

Due to the issues with word norm availability, only the first three 
components were checked for correlations with the emotional norms. 
The vocabulary of words from the GoEmotions dataset was filtered to 
remove the words that occur fewer than 50 times and more than 1,000 
times in the dataset. From among those, 364 words overlapped with 
the norm dataset (Bradley and Lang, 1999), which consists of 1,030 
words. The scores from the first PCA component achieved a 
correlation of r = 0.31 for valence with p = 2.48 × 10−9. The correlation 
of the second component and the norms for arousal were found to 
be insignificant with r = −0.13, p = 0.14. The third component was also 
insignificant for its correlation with dominance at r = −0.02, p = 0.68. 
As the quality of word vectors is heavily dependent on the amount of 
text on which they were trained, this analysis was not replicated in the 
robustness analysis.

3.4 Qualitative words inspection

The external word embedding model (Dadas, 2019) was then used 
to pick 500 words from the vocabulary, which had the highest cosine 
similarity with the word “emotion”. The numerical representations of 
words were then subjected to a PCA transformation. Finally, 30 
highest and lowest words on each component were extracted (see 
Table 1). Again, as this analysis is word vector dependent, it was not 
replicated in the robustness analysis. For this check, we concentrated 
on the visual inspection of the emotion vectors. The overall positions 
of the emotion vectors on the PCA dimensions changed only slightly, 
which we attribute to the lower number of datapoints in the 
split datasets.

3.5 Robustness check

To analyze the robustness of our analysis we additionally 
randomly split the dataset into two equal halves and repeated the 
analysis described in the Method section on these two halves, to 

FIGURE 2

Parallel analysis plot.
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ensure that similar distributions of emotion vectors are achieved. The 
overall positions of the emotion vectors on the PCA dimensions 
changed only slightly, which we attribute to the lower number of 
datapoints in the split datasets. The full report of the robustness check 
can be found in Supplementary materials.

3.6 t-SNE components visualization

The results of the t-SNE analysis were plotted in Figure 5.

3.7 The logistic regression

The only significant variable in the regression model was the first 
PCA component (β = 1.60; p < 0.001; see Table 2).

4 Discussion

The visualization of the emotion vectors (see Figure 3) along the first 
component complies with the valence negative–positive dichotomy. On 
the right, there are many high valence emotions such as joy, admiration, 
excitement, gratitude, love, and amusement. On the left, negative 
low-valence emotions can be  found. These include disgust, fear, 

embarrassment, nervousness, disappointment, grief, remorse, and 
sadness. The second component seems to reflect the arousal dimension, 
with high scores assigned to such emotions as surprise, curiosity, anger, 
excitement, disgust, and annoyance; and low scores assigned to caring, 
gratitude, sadness, remorse, grief, and relief. Interestingly, love and 
desire are also classified among low arousal emotions. This could be an 
artifact of the nature of the dataset, and the fact that posts classified as 
love and desire could in many instances relate to those emotions being 
not satisfied, and thus including words that usually would be associated 
with sadness, and other low valence, low arousal emotions. Another 
possibility is that, purely due to the nature of the PCA, the first 
component does not fully capture the valence spectrum; however, the 
arrangement of the rest of the emotions enables a partial identification 
with the valence dimension. The third component (see Figure 4) is a lot 
less varied, with a lot of emotions clustered in the middle. Considering 
that it explains less than 10% of the variance in the word vectors, that is 
to be  expected. This component, however, clearly separates such 
emotions as anger, and annoyance (high dominance) from emotions 
such as fear, curiosity, and confusion (low dominance). The fourth 
component, explaining the least amount of variance, could reflect the 
fourth dimension of emotional experience, namely unpredictability. 
This is evidenced in the strict separation of curiosity from amusement. 
However, the emotion of fear does not match this interpretation, and 
thus, it is not possible to state it with certainty. The distribution of 
emotion vectors was largely replicated during the robustness analysis for 

FIGURE 3

Emotional vectors plotted with regard to the first two PCA components.
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FIGURE 4

Emotional vectors plotted with regard to the third and fourth PCA components.

TABLE 1  Highest and lowest ranked words for each of the PCA dimensions.

PCA dimension Words

PCA 1 high
together, fun, play, character, music, hate, story, interesting, amazing, album, especially, surprise, would, song, characters, interest, wish, 

unfortunately, perspective, love, stuff, one, happens, much, learned, ideas, quite, filled, sound, change

PCA 1 low
behavior, somehow, without, nobody, body, pain, almost, meant, happened, cause, clearly, completely, funny, away, humans, wrong, nothing, 

hurt, brain, others, trust, feel, saying, thinking, situation, someone, caused, truth, honestly, must

PCA 2 high
interesting, religion, seen, actually, basically, picture, crazy, different, even, clearly, wonder, literally, political, talking, beyond, individual, rather, 

actual, behavior, look, almost, quite, people, irony, pure, another, would, incredibly, power, exactly

PCA 2 low
pain, feel, feeling, appreciate, hear, alone, sometimes, hope, situation, life, better, good, feelings, felt, heart, true, always, everything, laugh, bad, 

able, thoughts, wonderful, choice, whatever, relationship, focus, anyway, loved, wish

PCA 3 high
story, happen, might, different, interesting, hope, scared, could, someone, something, weird, anyone, hear, totally, happened, never, afraid, crazy, 

bring, imagine, quite, would, moment, bit, alone, similar, true, surprise, nobody, together

PCA 3 low
give, good, say, literally, trying, opinion, people, words, saying, word, idea, understand, absolutely, mean, bad, play, incredibly, sound, everything, 

strong, either, power, behavior, move, point, every, reasons, everyone, telling, nothing

PCA 4 high
tell, imagine, moment, sad, sometimes, everyone, kinda, crying, loud, remember, little, fun, somehow, even, angry, someone, funny, feel, 

triggered, almost, thought, cry, still, tears, honestly, scene, seeing, hurt, scared, turn

PCA 4 low
interesting, change, give, need, opinion, anything, faith, unfortunately, means, different, situation, anyone, given, heard, deal, question, quite, 

rather, great, yet, something, individual, often, knowledge, hear, move, talent, nothing, however, another
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the first two dimensions (valence and arousal). The last two dimensions 
were significantly less pronounced, which is most probably the effect of 
smaller datasets, as each of the two datasets contained only half of all the 
text available for the primary analysis (see Supplementary materials).

The results of the correlation tests of the placement of words 
alongside the different components have to be interpreted in the light 
of the fact that while emotion vectors synthesize the information from 
many documents, labeled with a given emotion, single word vectors 
only relate to a limited number of nearest words on each side of the 
specific token. This results in the word vectors carrying less 
information and thus not being a robust indicator of emotional 
expression. Still, even under these strict limitations, the first 
component achieves a robust correlation with its corresponding norm 
(r = 0.31; p < 0.001). It should be noted that the lack of significance of 

the other components does not prove that they are not related to their 
corresponding dimensions. This point is underlined by the scarcity of 
information embedded in their respective word vectors, as well as the 
fact that only a small portion of words from the GoEmotions dataset 
actually overlap with the available norms (Bradley and Lang, 1999).

Even though the qualitative inspection of words suffers from the 
same limitation of word vectors carrying less information than 
the emotion vectors, some interesting examples that corroborate the 
correlation between principal components and the dimensions of 
emotional experience can be found (see Table 1). Scored high on the 
first component (reflecting valence), are such words as together, fun, 
play, music, interesting, and love, all of which relate to high valence 
concepts. On the other side of the same component, there are words 
like pain, and hurt, both related to low valence concepts. For the 

FIGURE 5

t-SNE components.

TABLE 2  Logistic regression results predicting sentiment for texts.

Variable B SE z p 95% CI

Constant −0.401 0.259 −1.551 0.121 [−0.909, 0.106]

PCA 1 1.599 0.209 7.657 0.000 [1.189, 2.008]

PCA 2 −0.116 0.251 −0.462 0.644 [−0.609, 0.377]

PCA 3 −0.466 0.359 −1.297 0.195 [−1.170, 0.238]

PCA 4 −0.254 0.318 −0.801 0.423 [−0.877, 0.368]

Dependent variable: sentiment. Observations: 155,633. Pseudo R-squared: 0.0003071. Log-Likelihood: −103,800. LLR p-value: 4.684e−13.
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second component, high scoring are words like interesting, crazy, 
power, and incredibly, which relate to high arousal; low scoring words 
are feeling, and alone, reflecting low arousal. The high scoring words 
on the third component are among others: scared, afraid, crazy, and 
surprise corresponding to low dominance; lower-scoring words on 
this component are words like absolutely, strong, power, and 
incredibly, reflecting high dominance (keep in mind that in the case 
of the third component the factor loadings are stipulated to 
be  negatively related to the dominance dimension; see Figure  4). 
Finally, the words presented for the fourth component do not seem 
directly related to the dimension of unpredictability.

The aforementioned words mostly confirm the relation of the 
PCA components to the emotional dimensions; however, as can 
be seen from Table 1, not all of the presented words fit this pattern. 
Examples such as hate for high valence, laugh for low valence, 
wonderful, and laugh for low arousal do not fit into the outlined 
interpretation. These outliers could exist both due to the 
aforementioned problem with low informative value of specific word 
vectors and due to the specific ways in which they were used in their 
corresponding posts. Because of the high volume of the dataset, a 
qualitative exploration of each and every post within which they were 
found is impossible.

The t-SNE analysis revealed two main clusters of emotion vectors 
(see Figure 5). One cluster comprises negative emotions such as anger, 
sadness, disappointment, and remorse. The other cluster includes 
mainly positive emotions such as admiration, pride, excitement, joy, 
and amusement, as well as neutral emotions. Interestingly, 
disapproval, an openly non-positive emotion, is also found in this 
cluster. This bipolar structure confirms a significant influence of the 
valence dimension on the semantic arrangement of the emotion 
vectors. Since t-SNE focuses on preserving pairwise distances 
between data points (Van der Maaten and Hinton, 2008), it primarily 
reflects the valence dimension, while the other dimensions identified 
by PCA are not visible in the t-SNE visualization, as expected. 
Consistent with t-SNE’s objective, emotions with similar meanings 
and expressions (e.g., desire and optimism; confusion and curiosity; 
sadness and disappointment) are positioned close to each other. It is 
important to note that the t-SNE results are sensitive to the choice of 
hyperparameters. In this analysis, we selected parameters that clearly 
delineated clusters, but different settings could produce varying 
results. A comprehensive exploration of all possible hyperparameters 
is beyond the scope of this paper.

Finally, the logistic regression results indicated that the first PCA 
component has a significant relationship with the sentiment of the 
texts (β = 1.60, p < 0.001; see Table 2). This finding further corroborates 
the conclusion that the first component reflects the valence dimension. 
Although the amount of variance explained by the model is very low 
(Pseudo R-squared: 0.0003071), this is expected because the emotion 
vectors used to create the PCA components were derived from the 
compressed information of over 50,000 texts, making it impossible to 
retain all information about every single text. Similar to the situation 
with the word vectors, the individual texts were only small snippets of 
the long-concatenated series that generated the emotion vectors.

4.1 Limitations

Our methodology assumes that words surrounding a specific 
token are indicative of its emotional connotation. However, this 

assumption does not consider the complexity of language and 
semantics. The emotional connotation of a word can significantly 
change depending on its position and usage in the sentence. As a 
result, single-word vectors may carry less information and be  less 
reliable indicators of emotional expression. This challenge is reflected 
in our correlation test results, which, while statistically significant, 
show a relatively low correlation coefficient (r = 0.31). While more 
advanced word embedding methods that consider distant relations 
between words exist, such as transformer models (Vaswani et  al., 
2017), they are limited in the length of the text that they can represent, 
and thus are not sufficient for the current task where long, 
concatenated texts were analyzed. One possibility of using them is to 
average the vectors representing texts related to specific emotions, 
however, due to the noise inherent in this averaging, this method was 
not chosen for the current study.

Additionally, the interpretations of the third and fourth 
components of the PCA analysis might not fully correspond to the 
emotional dimensions of dominance and unpredictability, 
respectively. The third component was less varied and mainly 
clustered around the middle, suggesting a limited variability in 
dominance among the emotions. The fourth component explained the 
least amount of variance and its link to the dimension of 
unpredictability was inconclusive, especially given the unexpected 
positioning of certain emotions such as fear. Furthermore, there were 
certain word examples that did not fit the expected emotional 
dimensions, such as ‘hate’ for high valence and ‘wonderful’ for low 
arousal. While we  attribute these anomalies to discourse-related 
artifacts and noise, they may also point to the complexity and 
multidimensionality of emotions that a linear component analysis 
may not fully capture. Another possibility points back to the 
information issues related to analyzing single word vectors, as they 
carry significantly less information than their emotion 
vectors counterparts.

From the methodological perspective, the fact that the emotions 
were labeled by the readers of text, and not their authors, stands in 
disagreement with the methods of previous studies, which often 
probed the person who experienced the emotions directly for their 
descriptions. One cannot expect that in all possible cases the annotator 
will correctly judge the emotion of the writer, or that the writer will 
always honestly describe their internal affairs. While the question of 
whether the influence of these two confounders is strong enough to 
produce qualitatively different results is an open one, the problem of 
text-based emotion communication and understanding is important 
in itself. This is especially true in the current age, where a lot of 
communication is done through text.

The preset number of emotion labels can also be  seen as a 
limitation in the sense that by using them, the results of the current 
study will be biased by previous literature that has produced them. On 
the other hand, if annotators had been asked to describe the emotions 
in an open-ended manner, their results would still have to 
be categorized into label-like groups just the same. This grouping 
would be necessary to bind enough different texts together to produce 
robust emotion vectors. Drawing from the knowledge generated by 
previous studies is therefore a defensible alternative.

Finally, it is worth mentioning, that while the research on 
emotional components has a long history (Gendron and Feldman 
Barrett, 2009), the current study is to our best knowledge the first 
attempt at recreating emotional components based on numerical 
representations of natural language and, as such, is to be viewed as 
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exploratory research. The findings of this study are best viewed as an 
invitation to use word embeddings to study psychological phenomena 
using newer, better-suited methods that allow researchers to analyze 
qualitative data in a quantitative manner.

4.2 Implications

Despite its exploratory nature, the current study shows that 
similar emotional components to the ones presented by the previous 
literature can be  extracted from text using word embeddings. 
Specifically, these components were recovered by triangulating the 
semantic content of texts sourced from social media with peoples’ 
judgements of what emotion the author of these texts wanted to 
express (limited to the 28 emotions picked for annotation). 
Considering the two confounders present—first the willingness of the 
author to honestly communicate their emotions, and second, the 
ability of the annotator to correctly gauge what the author wanted to 
communicate—it is difficult to claim that the topology reported in the 
current study perfectly reflects the topology of internal emotional 
experience. Furthermore, given that the annotators were limited in 
their responses to a preset list of 28 emotions based on psychological 
literature, this study cannot introduce novel emotional phenomena, 
as it is constrained to those studied by previous researchers.

However, what this study shows is that the defining dimensions of 
emotions, as studied through more direct, yet less ecologically valid 
means of questionnaires and self-reports, are reflected in the semantic 
structure of how they can be expressed in written language. This can 
be explained by the process through which our need to communicate 
our internal states through language shapes and creates language itself. 
This interpretation aligns with Chafe’s work, which emphasizes that 
the structure and use of language are deeply influenced by the need to 
communicate conscious experiences and suggests that our expressions 
in written language naturally reflect the dimensions of internal 
emotional states (Chafe, 1996, 2013).

This method, when compared to the previous studies which mostly 
used specialized questionnaires, allows for a more ecologically valid 
analysis of the core dimensions of emotions. It ensures that the extracted 
components are grounded in the naturalistic expression of emotions and 
not artificially constrained by the assumptions of any particular 
theoretical model (Jackson et al., 2022). However, due to the indirect 
procurement of emotion labels (through readers and not directly from 
the authors), as well as the noise present in naturalistic expressions, it does 
not directly challenge existing methods, complementing them instead.

However, the presence of this noise could shed some light on the 
differences between the previous studies in the number of components 
that can be recovered (Bliss-Moreau et al., 2020; Fontaine et al., 2007; 
Mehrabian, 1996). This is evidenced by the clear dichotomy between 
fear and anger on the third component, supported in part by the 
qualitative word inspection, and by the vague sketch of unpredictability 
on the fourth of the recovered components. Perhaps with cleaner data 
and higher sample sizes, these components could be  systematically 
recovered using classical methods. Another possibility is that laboratory 
studies obscure certain dimensions of emotional experience. This could 
be true especially for the dimension of dominance, the expression of 
which could be socially undesirable. Here the use of external annotators, 
rather than the authors of the text becomes an asset as it eradicates the 
influence of such social undesirability on the effects of the study.

As a last point, it is important to emphasize that the “emotion 
vectors” discussed in this study are purely mathematical 
representations derived from word embeddings, capturing the 
semantic and emotional content of text (Gutiérrez and Keith, 2019; 
Mikolov et al., 2013a,b). Unlike vectors of force in physics, which 
have a direction and magnitude related to physical movement, 
emotion vectors do not directly correspond to any physical or 
embodied experiences. They are abstract, numerical constructs 
designed to encapsulate the relationships between words in a 
multidimensional space, reflecting the latent structure of emotional 
content in language. This distinction is crucial to avoid conflating 
these computational representations with the physiological or 
psychological processes involved in action readiness, which pertains 
to the body’s preparation for specific actions in response to 
emotions (Frijda, 2010). Nonetheless, this separation does not 
diminish the potential value of exploring how these numerical 
representations might correlate with or illuminate aspects of 
embodied emotions. Future research could delve deeper into this 
intersection, investigating how emotion vectors could be used to 
study the embodiment of emotions, perhaps by correlating these 
computational measures with physiological data or by incorporating 
word embedding techniques into previous studies that tested the 
influence of text data on participants’ action-readiness (Lewinski 
et  al., 2016). Such explorations could provide a richer, more 
integrated understanding of how emotions are represented 
and experienced.

4.3 Future directions

Future studies could try to recreate the current study on additional 
datasets of comparable quality. This would require researchers to 
assemble datasets of adequate length and content variance. The task 
of systematizing such endeavors has not been undertaken yet; however 
the great work done by Google (Demszky et al., 2020) can offer some 
directions in that regard. To our knowledge, as of yet, no dataset of 
comparable quality exists in open access. However, the data itself is 
available on the Internet, and its size is constantly growing, due to the 
popularity of social media sites.

Alternatively, recreating this study on a dataset with emotions 
annotated by the text authors instead of readers, could provide 
valuable information on the nature of the difference between these 
two emotional planes. This kind of research could shed more light on 
the problems related to communicating emotional information over 
the internet and through other text-based media, with an emphasis on 
the different sources of noise that partake in this process and can in 
many cases result in misunderstandings. The method itself can also 
be extended to different domains of psychology. For example, it could 
be  well applied to the task of reconstructing the components of 
personality, assuming that the data are found to support this endeavor. 
Word embeddings can also be used in a completely data-driven way 
to analyze the results of qualitative interviews and create completely 
new psychological constructs. Furthermore, the method bypasses the 
difficulties in analyzing the emotional experience of individuals 
associated with such limitations as memory bias in answering 
questionnaires. The possibility of analyzing the text written by a 
specific individual over a span of time could therefore allow 
researchers to get a glimpse of what so far has been hidden behind 
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population-wide studies—the way people express and experience 
emotions individually.

From a technical perspective, there is a possibility that the method 
of creating emotion vectors and applying PCA to them with the aim 
to extract emotional dimension components could be repurposed as 
a feature extraction method for emotion prediction. Future studies 
could try to apply similar techniques to this and other datasets and see 
whether the addition of these extracted features to more advanced 
machine learning models, such as deep learning architectures, 
XGBoost, SVM with non-linear kernels, and artificial neural networks 
(ANNs) leads to improved model accuracy and robustness.
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Abstract
Data on the emotionality of words is important for the selection of experimental stimuli and sentiment analysis on large 
bodies of text. While norms for valence and arousal have been thoroughly collected in English, most languages do not have 
access to such large datasets. Moreover, theoretical developments lead to new dimensions being proposed, the norms for 
which are only partially available. In this paper, we propose a transformer-based neural network architecture for semantic and 
emotional norms extrapolation that predicts a whole ensemble of norms at once while achieving state-of-the-art correlations 
with human judgements on each. We improve on the previous approaches with regards to the correlations with human judg-
ments by Δr = 0.1 on average. We precisely discuss the limitations of norm extrapolation as a whole, with a special focus 
on the introduced model. Further, we propose a unique practical application of our model by proposing a method of stimuli 
selection which performs unsupervised control by picking words that match in their semantic content. As the proposed model 
can easily be applied to different languages, we provide norm extrapolations for English, Polish, Dutch, German, French, 
and Spanish. To aid researchers, we also provide access to the extrapolation networks through an accessible web application.

Keywords  Affective norms · Transformer-based neural network · Semantic extrapolation · Emotional norms extrapolation · 
Experimental stimuli selection · Valence and arousal

Affective norms of words have various applications across 
psychology, linguistics, and machine learning. Their impor-
tance is evidenced by the large number of use cases they 
enjoy. They have been used to select stimuli for experiments 
in social and affective psychology to investigate behavior 
(Crossfield and Damian, 2021), to study clinical popula-
tions (Williamson et al., 1991; Sloan et al., 2001), and as 
correlates of brain activity (Citron, 2012; Imbir et al., 2022; 
Kanske & Kotz, 2007; Yao et al., 2016). Together with norms 
of semantic dimensions they serve as tools for the study of 
lexical semantics, concerned with how concepts may be rep-
resented in the brain (Binder et al., 2016). Recently, seman-
tic and affective norms have seen a surge in popularity with 
the growing interest in machine learning, where they have 
been used to train automatic classifiers of, for example, the 

sentiment expressed in a given piece of text (Nielsen, 2011). 
All such uses rely on databases of word – norm pairs, where 
norms are calculated based on human ratings of the word 
on a particular dimension of interest (e.g., how positive, or 
negative a given word is, a technique dating back to the work 
of Osgood et al., 1957). To this end, measurement scales 
for various lexical affective constructs have been developed, 
starting with the simple Likert scale, and continuing with the 
popular self-assessment manikin of Bradley and Lang (1994).

The two most popular approaches in creating emotional 
norms include either rating words on emotional dimen-
sions or their association with discrete emotion categories. 
The most popular of these dimensions in the first approach 
include valence, arousal, and dominance (Bradley & Lang, 
1999; Imbir, 2015; Sianipar et al., 2016; Söderholm et al., 
2013; Stadthagen-Gonzalez et al., 2017; Verheyen et al., 
2020; Warriner et al., 2013; Yao et al., 2017) and to a lesser 
extent other dimensions which may modulate emotional 
processing, such as concreteness, age of acquisition, sub-
jective significance, or origin of emotional load (Brysbaert 
et al., 2014a, b; Imbir 2016; Kuperman et al., 2012). As for 
discrete emotional categories, norms are usually concerned 
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with subsets of the six basic emotions: fear, anger, joy, sad-
ness, disgust, and surprise (Mohammad, 2018; Stevenson 
et al. 2007). The affective norms have been published for 
many languages other than English (Bradley & Lang, 1999): 
French (Syssau et al., 2021), German (Võ et al., 2009), 
Spanish (Redondo et al., 2007), Dutch (Moors et al., 2013), 
Polish (Imbir, 2016), Turkish (Kapucu et al., 2021), Italian 
(Montefinese et al., 2014), Portuguese (Soares et al., 2012), 
Greek (Vaiouli et al., 2023), and Chinese (Yao et al., 2017).

Some applications of affective norms, such as complex 
experimental designs, demand very large datasets, the creation 
of which can be prohibitively expensive. This demand has been 
partially satisfied for English words, with the expansion of the 
classic Affective Norms for English Words database (ANEW; 
Bradley & Lang, 1999) from 1035 to 13,915 by Warriner et al. 
(2013). However, such large dataset expansions are still una-
vailable for many languages. Moreover, even in English, the 
existing norms may not be enough for certain types of studies, 
which could require norms for all English words. Interesting 
examples of such include analyses of large-scale trends and 
shifts in the use of language across thousands – if not millions 
of texts (Kim & Klinger, 2019), where an accurate assessment 
may require a rating for each word to avoid bias (Snefjella & 
Blank, 2020). It is in this context that lexical norm extrapola-
tion techniques start to be developed, as they allow research-
ers to use existing norms to expand the database lexicon by 
predicting the norms of previously unrated words.

Affective norms extrapolation

How does one go about determining the emotionality of words 
without any human judgment information? A first intuition 
may be to say that the emotional load of a word can be approx-
imated with the emotional load of another, similar, word for 
which we possess affective norms. This indeed turns out to be 
the basis for most published norm extrapolation techniques, 
the difference being mostly in the level of sophistication with 
which the similarity metrics are defined and the introduction 
of ways to decrease noise by averaging across many similar 
words. A popular source of similarity metrics comes from the 
linguistic distributional hypothesis, which states that words 
that occur in similar contexts tend to have similar meanings 
(Boleda, 2020). Thus, the dominant approach in affective 
norms extrapolation is usually to average a norm of interest 
across a word's k-nearest neighbors based on a co-occurrence 
metric, which the review by Mandera et al. (2015) deemed 
the most effective method as of 2015. An early example of 
such an approach includes Bestgen and Vincze’s (2012) use of 
latent semantic analysis to derive similarities between words, 
where co-occurrence is calculated from paragraphs of large 
language corpora. While varying the number of neighbors to 

average across, they found the highest correlations between 
human ratings and their estimates to be r = 0.71 for valence, 
r = 0.56 for arousal, and r = 0.60 for dominance.

More recent approaches used in machine learning for 
sentiment analysis employ similarity metrics based on dis-
tances in a vector space, where words are represented as 
points (e.g., Munikar et al., 2019). These spaces, called word 
embeddings, are intended to be lower-dimensional represen-
tations of the relationships between the words in language 
corpora and are created in various ways, which include 
dimensionality-reduction techniques on the co-occurrence 
matrix (e.g., multidimensional scaling) and the use of neural 
networks (e.g., in word2vec; Mikolov et al., 2013).

A different approach has been employed (to great effect) 
by Vankrunkelsven et al. (2015). Their method involves using 
a vast dataset of word associations (De Deyne et al., 2013), 
which are based on 70,000 participants reporting their three 
associations with one of 12,000 cue words. Since free asso-
ciations are often based on semantic relationships with the 
cue word, these data can be used to construct a great simi-
larity metric. Vankrunkelsven et al. used multi-dimensional 
scaling to construct word embeddings based on this data and 
achieved correlations of r = 0.89, r = 0.76, r = 0.77, r = 
0.67, and r = 0.81, for valence, arousal, dominance, age of 
acquisition, and concreteness, respectively. As semantic norm 
extrapolation is most useful for languages where access to 
such data is limited, the need to collect vast word association 
data to perform norm extrapolation seems, while elegant, to 
be of limited practical utility. Still, a comparison by Vankrun-
kelsven et al. (2018) of their association-based method with 
previous methods based on co-occurrence shows that their 
method achieved state-of-the-art results for the time.

A challenge for all such extrapolation methods, recently 
presented by Snefjella and Blank (2020), posits that 
researchers may, however, be overestimating the accuracy 
of their methods of norm extrapolation by relying on cross-
validation to evaluate performance. This is because the 
words that are missing from the norm databases (in which 
we are ultimately interested in extrapolation) are not missing 
at random from all possible words. They suggest considering 
norm extrapolation as missing data imputation.

Advances in neural network‑based language 
models

In recent years, the field of computational linguistics has been 
taken by storm with rapid developments in neural network-
based models. especially large language models, one of the 
most notable ones is called GPT-3 and was trained on a corpus 
of text comprising nearly 500 billion words (Brown et al., 
2020). The performance of this model varies, as it has been 
shown to perform with near human ability on many high-level 
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tasks like imitating an author or waxing philosophical while 
failing at several very simple tasks like multiplying large num-
bers (Elkins & Chun, 2020; Sobieszek & Price, 2022). It is, 
however, worth stressing that on many occasions its perfor-
mance is indistinguishable from that of a human and that this 
high performance is not merely the product of the sheer size of 
the training dataset. GPT-3, as well as its predecessors GPT-2 
and GPT, utilize a specific machine learning architecture 
called attention, which allows them to attend to many distant 
words at once, thus being able to grasp complicated contex-
tual information when analyzing text (Brown et al., 2020).

These developments lie in contrast to the previous attempts 
at text classification, translation and production in natural 
language processing, as previous models were very limited 
in their scope when it comes to attending to distant words. 
The earliest approaches utilized the already-mentioned word 
embeddings, which were heavily dependent on closely co-
occurring words, and thus were unable to capture relations 
between distant signs (Almeida & Xexéo, 2019). The situa-
tion improved with the rise of recurrent neural networks such 
as LSTMs (Long Short-term memory modules) which tried 
to retain significant textual information as they gradually 
advanced through the lines of text (Yu et al., 2019). Unfortu-
nately, these approaches were plagued by the problem of van-
ishing gradients, resulting in the retained information being 
lost over time as the activation progressed through the net-
work (Hochreiter, 1998). They were therefore short-sighted. 
Afterwards came convolutional networks (CCN), which com-
pressed contextual information using sliding windows, thus 
capturing their contents (Yin et al., 2017). These had a differ-
ent flaw, however, as to capture complex contextual informa-
tion one had to apply very large sliding windows (buffers for 
word compression), and many of them – which was incredibly 
costly in terms of computational power (Vaswani et al., 2017).

Finally, the concept of “attention” was introduced, which is in 
simple terms the process of weighing the inputs to a neural layer 
with the use of trainable weights. This method was first applied 
in recurrent neural network-based sequence-to-sequence mod-
els, which iteratively passed the generated sequence through a 
generator module to obtain the next word, appended the word to 
the generated sequence and repeated the process until the whole 
sequence of interest was generated. The real breakthrough, how-
ever, came when the recurrent network architecture was replaced 
by attention. This feat, achieved by Vaswani et al. (2017), mor-
phed into a family of models called transformers, some among 
which are BERT, RoBERTa, and XLM (Devlin et al., 2018; 
Conneau & Lample, 2019; Liu et al., 2019).

Transformer models consist of two modules, an encoder, 
and a decoder. As this architecture was primarily designed 
for the task of language translation, we will use the task of 
language translation as a reference when explaining its 
mechanism. In simple terms, a sentence in the 1st language 
is given to the encoder, which transforms it into a numerical 

representation using attention and feedforward layers. At the 
same time, a similar thing happens in the decoder, where a cor-
responding sentence in the 2nd language (with blank “masks” 
instead of the words that the architecture is meant to predict) is 
also transformed into a numerical representation, using simi-
lar transformations. Then, the output of the encoder is passed 
to the decoder, where it is concatenated with the numerical 
representation of the L2 sentence and together they are passed 
through additional attention and feedforward layers. The final 
output is compared with the intended output, and the weights 
on each of the layers are updated to minimize the error between 
the two (Devlin et al., 2018). Once the model is trained, the 
encoder can be extracted from the model and be used to obtain 
rich, contextual text embeddings that can be used for further 
training (Munikar et al., 2019). The usefulness of such text 
embeddings stems from their ability to quantitatively describe 
the embedded text on meaningful dimensions the model dis-
covered during training. A common example is the ability to 
use the vector in the embedding space corresponding to a given 
word as a direction in which one may manipulate the embed-
ding of another word, e.g., find the representation of the word 
‘man’ by subtracting the representation of ‘royal’ from that of 
the word ‘king’ (Ethayarajh, 2019).

In summary, the evolution of computational linguistics 
has led to the development of attention-based transformer 
models, such as GPT-3, which outperform their predeces-
sors such as LSTMS and CCNS in processing distant words 
in text, with their high performance attributed not only to 
the vast training datasets but also to their ability to retain 
complex contextual information, a characteristic lacking in 
earlier models due to issues like vanishing gradients and 
computational costs.

Word stimuli selection

We know from various studies of word processing that a 
multitude of factors by which we can describe words influ-
ence neural and behavioral responses in experiments using 
words as experimental stimuli. These include accessible 
features like length and frequency in the language (Hauk & 
Pulvermüller, 2004; Kuchinke, et al., 2007; Méndez-Bértolo 
et al., 2011), but also features which are not easily acces-
sible, such as differences in semantic features and emotive 
content (e.g., abstractness, valence, arousal; see Citron, 2012 
for a review). Here, emotional databases are an important 
asset, as they enable word stimuli selection for experimental 
manipulation and control of such factors. There however 
remain challenges to valid stimuli selection based on avail-
able datasets. The first stems from recent striking results that 
even newly discovered emotional dimensions can influence 
behavior with effect sizes comparable to those previously 
reported in the literature for valence and arousal (e.g., origin 
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and subjective significance in experiments of Imbir et al., 
2020, 2021, 2022), as well as known factors which were 
until recently not controlled in such studies (e.g., concrete-
ness in experiments of Kanske & Kotz, 2007). The existence 
of such unaccounted-for dimensions may explain the dispar-
ity of reported results on the influence of emotional factors 
on behavior (such as those in the review by Citron, 2012) 
especially when stimuli lists are short and selected from a 
limited dataset. For this reason, a method of stimuli selection 
that would more likely produce valid stimuli lists may need 
to somehow reduce the influence of these unknown factors.

When constructing a manipulation of, for example, valence 
using emotional norms, we pick sets of negative and positive 
words that do not differ on some control dimensions (e.g., 
length, frequency, and arousal). To add an element of unsu-
pervised control (control of unspecified factors), we propose 
to additionally perform semantic matching between these con-
ditions, which involves selecting words for these groups con-
taining words paired on their semantic features while differing 
in the manipulated factor. Words similar in meaning and used 
in similar contexts are more likely to have similar values on 
dimensions we did not explicitly control, such as imageability, 
than a random word pairing. An example of such a pairing 
may be the positive “peaceful”, with the negative “boring”. 
Both have low arousal, but even more importantly, both are 
approximately matched in their semantic content and connota-
tions, while differing in the sign of the emotion attributed to 
the situation. This is indeed an example of a pairing found by 
our stimuli descent algorithm, which is introduced in Study 3.

Study 1: Transformer‑based norm 
extrapolation

We hypothesize that the use of highly contextual represen-
tations of words as input to a model trained to predict the 
emotional norms will be able to outperform the previous 
approaches in norm extrapolation. While some of the previ-
ous attempts at this task also relied on machine learning to 
extend affective norms, they all relied on word embeddings 
(e.g., Mandera et al., 2015) and thus were unable to capture 
the sophisticated contextual relations among distant words. 
Furthermore, contrary to word embeddings, the numerical 
representations obtained from transformers are flexible with 
regard to the task that they are trained on. For example, a 
transformer can be first trained to simply generate sentences 
but then retrained on a different, more specialized task such 
as emotion recognition in Twitter posts. This retraining will 
lead to slight changes in the numerical representations gen-
erated by the transformer, as the emotional information pre-
sent in the relation between Twitter posts and their training 
labels (e.g., happy, sad etc.) will seep into the weights of the 
model, crystallizing specialized affective knowledge. A good 

example of such a model is ERNIE, which was trained on 
several different tasks and achieved state-of-the-art results on 
several NLP benchmarks at the time of publication (Yu et al., 
2019). The use of models pre-trained on emotion recognition-
related tasks should therefore further increase the perfor-
mance of our approach. Additionally, since the transformer 
models have been trained for many different languages, our 
models will help researchers from different countries to 
extrapolate their norm datasets cheaply and accurately.

In the manuscript, we first provide a detailed description 
of the norm datasets that will be used to train the model. 
Afterwards, we detail the model’s architecture explaining 
the intuition behind choosing the right transformer module 
for the task. Then we describe the training regimes and pre-
sent results comparing the outputs of the models to a spe-
cially designated part of the original datasets, ending with 
a discussion.

Method

Linguistic materials and data curation

In the current study, we make use of the ANEW corpus 
(Bradley & Lang, 1999), and a corpus collected by Warriner 
et al. (2013) to train and test our model. The former consists 
of 1030 words with accompanying rater-based metrics for 
valence and arousal. The latter has 13,915 words with both 
previous metrics and, additionally, the age of acquisition and 
concreteness metrics. All the metrics have been normalized 
to range from 0 to 1. In line with the argumentation from 
previous work on these corpora, we used the ANEW words 
for the test set, subtracting them from the training set com-
posed of all the words present in Warriner’s database. The 
test set, therefore, consists of 983 words. The rest of War-
riner’s corpus (12,885 words) was divided into training and 
validation sets at a 9-to-1 ratio Table 1 and 2.

To expand our model to other languages, we make use of 
five additional datasets. For the Polish language, we employ a 
norm repository of 4900 words (Imbir, 2016). For Spanish, the 
dataset contains 1400 words (Redondo et al., 2007). For Ger-
man we use the BAWL-R dataset with 2902 words (Võ et al., 
2009). For French we use the FANCat dataset with 1031 words 
(Syssau et al., 2021) Finally, we employ norms for 4299 words 
in the Dutch language (Moors et al., 2013). Unfortunately, all 
of the same metrics were not available for all of the different 
languages. While fewer dimensions were available for Spanish 
and Dutch, the contrary was true for Polish, where we were able 
to use an eight-metric database. The availability of the metrics 
in each of the languages can be checked in Table 3. The metrics 
were normalized to the 0 to 1 range, and the datasets were split 
for training, validation and testing according to the 8:1:1 ratio.
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Model architecture

The proposed model maintains the same architecture across 
all languages and norms, with the only variation being the 
transformer embedding model used for each language. As 
transformer models are usually trained for singular lan-
guages at a time, we cannot use a model that uses all lan-
guages at the same time. Beyond issues of accuracy, this 
could pose troubles related to the differences in norms 
between different languages (Pires et al., 2019). To facili-
tate the use of our architecture in new languages, the selec-
tion of the embedding model is explained in Appendix 1. 
We only use the encoder from the transformer model as the 
base encoding layer for our model, and we build additional 
layers on top of it. The added layers consisted of a single 
fully connected layer with layer normalization and another 
layer with one number as its output. On top of that, we have 
applied a sigmoid activation function, which ensures that 
the output of our model yields a normalized value between 
0 and 1. This type of regression head was added for each of 
the predicted metrics.

Because models of similar infrastructure can be trained 
for different languages given enough training data, they can 
be fully substituted for each other, and similar models can 
be trained using them. This makes the proposed architec-
ture versatile and open to being implemented in different 

languages. Transformer models have already been trained 
in many different languages and are freely available online 
(Hugging Face, n.d.). Therefore, for most of the languages, 
the only thing needed to prepare a similar model is a dataset 
with affective measures.

However, choosing the right transformer for the base 
of the model is not as straightforward. Wherever possible, 
we have opted for models that either had more parameters 
and could therefore model language more accurately, or 
were pre-trained on emotion recognition tasks. However, 
the scope of our search was limited by both hardware con-
straints and model availability. Since different transformer 
models are pre-trained on various tasks, their performance 
on a specific task like ours may vary. If researchers want to 
train a similar model for a language that is not covered in 
our article, we advise them to run tests using all the different 
transformer models available in their language, until they 
find the one that rears the best predictions (see Appendix 1 
for more information).

The specifications for each of the models are shown in 
Table 1. The hyperparameters for our machine learning 
model were chosen according to common practices, wherein 
we used a combination of domain knowledge, model com-
plexity considerations, and computational efficiency to guide 
the selection, minimizing the risk of overfitting and ensuring 
optimal performance.

Table 1   The specification details of the different models

Specifications English Polish Spanish Dutch German French

Transformer encod-
ers

ERNIE 2.0 
(Yu et al., 
2019)

RoBERTa-
Polish (Dadas, 
2020)

“bert-base-spanish-
wwm-cased” 
(Perezrojas et al., 
2020)

“bert-base-dutch-
cased” (de Vries 
et al., 2019)

"bert-base-german-
uncased" (von 
Platen, 2021)

“french_toxicity_
classifier_plus_
v2” (Stakovskii, 
n.d.)

Mean number of 
raters

28 50 21 63 Not reported 36

Number of words 13,915 4900 1400 4299 2902 1031
Learning rate 5e-5 5e-4 5e-4 5e-4 5e-4 5e-4
Dropout 0.1 0.2 0.2 0.2 0.1 0.1

Table 2   Correlation results for the past extrapolation models

The best results for a certain metric are in bold. Lack of prediction for a certain metric is signified by a dash

Study Valence Arousal Dominance Concreteness Age of 
acquisi-
tion

Current Study 0.95 0.76 0.86 0.95 0.85
Vankrunkelsven et al., 2018 0.86 0.69 0.75 0.87 0.59
Vankrunkelsven et al., 2015 0.89 0.76 0.77 0.81 0.67
Mandera et al., 2015 0.69 0.60 0.48 0.80 0.72
Recchia and Louwerse, 2015 0.74 0.75 0.62 - -
Bestgen and Vincze, 2012 0.71 0.56 0.60 - -
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Each of the models was trained for 1000 epochs with 
early stopping (stopping the training before the model starts 
overfitting the training data). This was implemented by sav-
ing the model that had the best correlations with the valida-
tion metrics. We used the AdamW optimizer algorithm with 
an epsilon value of 1e-8, a weight decay of 0.3, amsgrad, and 
betas equal to (0.9, 0.999). Additionally, we implemented 
a warmup algorithm, which gradually elevated the learn-
ing rate for 600 learning steps, when it reached the maxi-
mum number, and then slowly lowered it, until the end of 
the training. The rest of the specifications like the learning 
rate and the value of the dropout can be found in Table 1 as 
it was language specific.

Results and discussion

The English model’s predicted affective norms achieved the 
following Pearson correlations with human judgements on 
words from the test set: valence: r = 0.95, arousal: r = 0.76, 
dominance: r = 0.86, age of acquisition: r = 0.85, concrete-
ness: r = 0.95, with an overall loss of 0.003. When compared 
to the previous methods (see Table 3), the present approach 
achieves the highest accuracy across all variables. This is 
true even compared to Vankrunkelsven et al. (2018) results 
after they have been adjusted for attenuation (r = 0.91, r 
= 0.83, and r = 0.85 for valence, arousal, and dominance 
respectively). The transformer-based model has therefore 
been shown to achieve higher accuracy when compared to 
the extrapolations reported based on LSA, and other word 
embedding methods (Bestgen & Vincze, 2012; Recchia and 
Louwerse, 2015), to methods based on human word asso-
ciation data (Vankrunkelsven et al., 2015), those based on 
simple machine learning methods (Mandera et al., 2015), 
as well as those combining the last two (Vankrunkelsven 
et al., 2018). It is worth pointing out that direct comparison 
was not always possible as the past models did not utilize 

the same high-quality validation set – the ANEW corpus. 
However, the improvement over those that did use it is so 
big that the change in the test set most probably would not 
change the overall conclusion.

Given the very high observed correlations we can compare 
their values to the theoretically highest correlation values we 
can expect for the norms of the test set. The uncertainty asso-
ciated with a prediction may be broken down into epistemic 
and aleatoric uncertainty. The former concerns the model 
shortfall that may be amended with better models, the latter 
concerns the uncertainty inherent to the studied phenomena. 
For norms, we may estimate the aleatoric uncertainty from the 
reported standard error associated with the number of raters 
and the variance of their judgments. With this information 
we can calculate the limit on prediction performance, which 
is reported in Fig. 1. In the next section, we discuss other 
sources of aleatoric uncertainty that limit extrapolation per-
formance. Given these results, along with improvements of 
around Δr = 0.1 on every metric, we can safely assume that 
the transformer model constitutes the current state of the art 
in norm extrapolation. Furthermore, due to the high popu-
larity of transformers, the current architecture can be easily 
adapted to different languages. This is evidenced by the results 
achieved on the subsets of Polish, Spanish, German, French, 
and Dutch words, most of them being very high (see Table 2). 
The ease with which the current approach can be adapted to 
extrapolate word norms in different languages is an improve-
ment on the previous methods, most of which relied on 
human-based word associations data (Vankrunkelsven et al., 
2015, 2018), which is not freely available for most languages.

Thanks to its high accuracy, the current model can be 
used to provide approximations of human judgements in 
contexts where the actual norm values do not need to be 
known with precision. The extrapolated norms should not 
be used as independent variables in linguistic studies of 
large corpora. As we will investigate in the next section, the 
predictions could be biased towards uncommon words that 

Table 3   Correlation results of affective metrics from the three additional languages on the test set

* p < 0.05** p < 0.01*** p < 0.001
Lack of the prediction of a certain metric is signified by a dash

Affective metric English Polish Spanish Dutch German French

Valence 0.95*** 0.93*** 0.89*** 0.87*** 0.8*** 0.8***
Arousal 0.76*** 0.86*** 0.80*** 0.80*** 0.7*** 0.77***
Dominance 0.86*** 0.92*** - 0.75*** - -
Concreteness 0.95*** 0.95*** 0.89*** - - -
Age of Acquisition 0.85*** 0.81*** - 0.82*** - -
Origin - 0.86*** - - - -
Significance - 0.88*** - - - -
Imageability - 0.88*** 0.86*** - 0.82*** -
Familiarity - - 0.71*** - - -
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appear in corpora but are unlikely to be used in experimental 
research. In cases where precision is needed, the model can 
still serve as a useful heuristic tool to identify words with 
specific values, which can be in turn verified experimentally. 
For example, the model can help identify words whose spe-
cific combination of affective metrics are rare, like those 
with neutral valence and high arousal, to help populate spe-
cific stimuli sets, as such words are useful in studies which 
try to orthogonally manipulate emotional dimensions.

The possibility of using transformer-based extrapolation 
for the task of finding rare emotion-combination words is 
important, as k-nearest neighbor approaches often generalize 
worse in sparse regions, such as in these specific configu-
rations of affective dimensions. If this generalization per-
formance is confirmed it would establish a heuristic search 
for low-density words and extrapolation for unusual, low-
frequency words as unique use cases of our method. How-
ever, we need to tackle a significant issue related to measur-
ing extrapolation performance, highlighted by Snefjella and 
Blank (2020). This problem becomes known when we view 
norm extrapolation as a missing data problem. In short, the 
use of supervised learning to impute missing data, condi-
tional on observed data is equivalent to single regression 
mean imputation, which is an imputation method known 
in the field of causal inference to produce biased estimates 
of accuracy via cross-validation (Van Buuren & Groothuis-
Oudshoorn, 2011). What Snefjella and Blank (2020) rightly 
point out is that the set of words that do appear in norms 
databases is not random nor representative of all words in 
a language, creating a “missing not at random” problem in 
norm extrapolation. Words that are longer, less common, or 
more abstract all have a lower probability of appearing in 

norms databases, thus also the test set, resulting in accuracy 
bias. In Study 2 we use these insights to test how biased is the 
cross-validation estimate of accuracy, as well as how good 
our transformer-based method is at prediction generalization 
on different emotional dimensions. To this end, we conduct 
tests both with normative and new experimental data.

The results of this section, while showing promise in the 
ability of the model to generalize to unseen words, suggest 
it cannot overcome the issues with norm extrapolation to all 
words highlighted by Snefjella and Blank (2020). For a large 
number of words, the large aleatoric uncertainty in norms and 
the systematic bias from mean imputation largely coincide, 
causing an irreducible error that prohibits valid prediction 
with ad hoc methods. Additionally, the systematic bias in 
extrapolated norms can hide some complex relationships 
between the examined variables, which prohibits the use of 
extrapolated norms in corpora studies and demands research-
ers experimentally verify the norms in orthogonal designs.

Study 2: Evaluating robustness 
in out‑of‑distribution prediction

The goal of this section is to test how well the transformer-
based extrapolation method generalizes under selection bias 
and assess which words' prediction is affected by the “missing 
not at random” problem. Recall that prediction uncertainty 
may be divided into epistemic and aleatoric uncertainty. The 
former is associated with the quality of the model, and the 
latter with the variability inherent to the studied phenomena. 
The use of norm extrapolation should be limited to words for 
which the prediction error is small – first to words that have 

perfect estimator (indicated by the end of the red bar). The length of the red bar indicates the model 
shortfall.

Note: Average cross-validated model performance (black bars) compared the expected correlation for a 

Fig. 1   The comparison of the accuracy achieved by the model to the 
perfect estimator correlations. Note: Average cross-validated model 
performance (black bars) compared the expected correlation for a 

perfect estimator (indicated by the end of the red bar). The length of 
the red bar indicates the model shortfall
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low aleatoric uncertainty (for which prediction is possible), 
and next to words for which the epistemic uncertainty is low, 
which depends on the extrapolation method. Assuming cross-
validation performance applies to all words runs into discount-
ing both the missing not at random problem and the existence 
of words for which the concept captured by the norm does 
not apply the same way as to words in the dataset. To under-
stand the latter point, take the norms for age of acquisition. To 
obtain the norms, Kuperman et al. (2012) asked participants 
to answer at what age they thought they had learned a given 
word. However, more than 50% of the words were not known 
by all respondents, which for this measure would imply the age 
of acquisition was larger than the age of the participant making 
the norm calculated only on respondents that knew the word 
biased downwards. Here, therefore, we encounter the first limi-
tation of our method, as age of acquisition norm extrapolation 
should not be used for large values. We conduct three tests for 
other metrics to assess the two sources of additional predic-
tion error: (a) stemming from the larger aleatoric uncertainty 
of words unlikely to appear in the test set (b) stemming from a 
larger epistemic uncertainty in out-of-distribution prediction.

We start by testing whether our method produces biased 
results under a meaningful selection bias. Abstract and con-
crete emotional words are processed differently by people, 
mediating the effects of valence and arousal on reaction times 
and the neural response (Kanske & Kotz, 2007). Concreteness 
is thus a good candidate for a factor that may bias results if 
selected not at random. We test the robustness of our method 
to additional systematic sampling bias by predicting norms of 
abstract words using a model trained only on concrete words. 
Next, we take advantage of English concreteness norms exist-
ing for a much larger set of words than the set of words in the 
test and training sets and establish how accuracy decreases for 
words known by fewer people. Lastly, we collect additional 
norms for words chosen entirely at random to find a lower 
bound for unbiased accuracy across the entire language.

Method

Design and linguistic materials

To test the generalization performance of our method, which 
the extrapolation methods need for accurate out-of-distribu-
tion prediction, we train a model within an artificially imposed 
selection bias. The English corpus used to train the original 
English model was resampled to include only words with 
a concreteness value above the center of the distribution, 
corresponding to a prediction of 0.5 in the original model 
(where low values are abstract), leaving 6307 words for train-
ing. We then constructed two test sets. The first included only 
highly abstract words (with concreteness < 0.5; 364 words), 
simulating the prediction of norms outside the database. The 

second contained a randomly selected test set from all words, 
matched on word length with the former. The models were 
trained in the exact same way as the English model in Study 1.

The norms for abstractness were taken from the dataset of 
Kuperman et al. (2012), which has two important features: (a) 
it contains an extremely large, compared to other databases, 
selection of 40,000 English lemmas, (b) the authors report the 
proportion of participants that knew the word. In the dataset, 
there were 27,000 single-word lemmas. We test whether there 
is a drop in accuracy compared to the accuracy calculated with 
cross-validation on words from Warriner et al. (2013). Second, 
we test how the accuracy decreases when decreasing the amount 
of people familiar with the word. General familiarity is strongly 
associated with the probability of being included in normative 
databases, as unknown words are not only hard to obtain norms 
for but also are not useful for experimental studies.

For the experimental validation, a set of completely ran-
dom Polish words conditional on not appearing in normative 
norms database was created. First we gathered a list of all 
words that appeared at least five times in Polish language 
corpora (following Kazojć, 2011) and obtained a set of 
31,967 words. From this set, we have randomly drawn 200 
words. The first 150 words that did not appear in the polish 
norms database were chosen to be rated on five dimensions 
– valence, arousal, dominance, imageability, origin – 30 dif-
ferent words per dimension. The last dimension is unique to 
the Polish norm dataset and refers to the origin of emotional 
load from either more automatic or reflective processes. The 
choice to rate a different set of words for each dimension 
will bar us from inferring which dimension suffers the most 
from out-of-distribution prediction, but it will give us a more 
accurate estimate of the performance drop-off for all dimen-
sions (as the same words for each dimension would make the 
drop-off more of a function of the particular word selection).

Participants

The validation study included 89 Polish-speaking partici-
pants (47 women, 42 men). The participants' mean age was 
22.6 (SD = 4.1). The study was promoted on Facebook, 
specifically targeting college students, as the original ANEW 
Polish norms (Imbir, 2016) were rated by students from this 
demographic. To stimulate participation, we held a drawing 
for a 50 PLN reward, which participants were eligible for 
upon completion of the study. Ratings from 66 participants 
(50% male) entered into the analysis after removing partici-
pants whose answer’s reliability was smaller than 0.8.

Procedure

The study was conducted through Qualtrics. We aimed to rep-
licate the most relevant aspects of the procedure used in the 
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normative study by Imbir (2016). Each participant was given 
two emotional dimensions to assess. Before each dimension 
started, participants read a detailed description of the dimen-
sions and saw a scale taken from the normative study. Partici-
pants rated words on a nine-point and answered a yes /no “Do 
you know this word?” question. Participants rated 30 words for 
each of the two dimensions, five words were repeated to assess 
rater reliability. This procedure differed from the normative 
study in that the normative study was done with pen and paper 
on a list of words, whereas the words appeared individually (on 
different questionnaire web pages) in our online study.

Results and discussion

We calculated accuracy metrics on out-of-distribution words 
(e.g., accuracy of valence prediction for highly abstract 
words, when the model was only shown concrete words dur-
ing training), and the test set drawn from all words for the 
four affective metrics which were not manipulated. Below, 
the results are shown and compared to the accuracies of the 
original English model in Table 4. Again, all correlations 
were significant with p < 0.001. The result shows that the 
transformer-based predictions generalize completely over 
concreteness, only with regards to the metrics of arousal and 
age of acquisition, with a drop in correlation of results rang-
ing from Δr = 0.1 in the case of arousal to Δr = 0.15 in the 
case of the age of acquisition. Valence and dominance were 
predicted with exactly the same accuracy in both conditions.

We estimate the correlation with human judgments on 
a large set of concreteness norms, none of which were 
included in the training set. We observe that the accuracy 
of our model decreases slightly on out-of-distribution 
words and when norms of words known by fewer people 
are included (shown in Fig. 2, all estimated correlations 
were significant with p < 0.001). First, estimating accuracy 
on all 6000 words, known by all participants among words 
not included in the training set, yields a correlation of r = 
0.91, slightly lower than the original test set correlation of 
r = 0.95. The correlation decreases by around 0.03 to r = 
0.875 for all words in the concreteness norms dataset, which 
includes words known by at least 85% of participants.

In the experimental validation, the words were chosen at 
random conditional on not being included in the emotional 
norms database. Mean ratings were calculated as an average 
of the mean ratings within each gender to control for the 
imbalanced participant sample within each rated dimension. 
Descriptive statistics for all words are available in the Sup-
plementary Materials.

Every time new norms are collected, we expect to see 
a larger error caused by regression to the mean, a different 
participant sample, rating procedure, word selection, a finite 
number of participants, as well as the change of emotional 
load of words over time (e.g., the word “pandemic”). We can 
quantify the change in correlation due to additional noise 
as the percentage change (1-r2/r1), where r1 is the original 
correlation and can r2 is the experimental correlation. Aver-
aging over the five variables (see Table 5), the average drop 
in accuracy on out-of-distribution words equaled Δr =11% 
(95% CI [5%, 19%]). Even for the worst value inside the 
confidence interval, less than 20% of the accuracy is lost on 
out-of-distribution words. Note that one should not compare 
the drop in accuracy between dimensions reported here, as 
each experimental accuracy was obtained on a different set 
of words.

Study 3: Stimuli descent algorithm

To demonstrate the utility of neural norm extrapolation, 
we propose a method leveraging the differentiability of 
the neural network that predicts emotional norms to select 
words for experimental stimuli. Here, we aim to manipu-
late certain emotional factors while controlling others. The 
algorithm, which we call stimuli descent, has the ability not 
only to control specified factors but to control other, unspeci-
fied semantic properties of words in an unsupervised way. 
To understand how this may be achieved, recall how word 
embeddings describe words on meaningful dimensions the 
model discovered during training. This fact is utilized, for 
example, in the wide use of the distance in word embed-
ding space as a measure of semantic similarity (Kenter & 
de Rijke, 2015; Sitikhu et al., 2019). Thus, words that are 
close together tend to have similar meanings, which is the 

Table 4   The results of the concreteness dependent missingness robustness check on the test set

* p < 0.05** p < 0.01*** p < 0.001
The original model accuracy relates to the results presented in Study 1. The concreteness manipulation relates to the accuracies of the model 
trained on high concreteness words and tested on low concreteness words. The comparison dataset relates to a model trained on a random sample 
of original words, keeping the length of the words in each of the datasets the same as in the case of the concreteness manipulation

Condition Valence Arousal Dominance Age of acquisition

Original model accuracy 0.95*** 0.76*** 0.86*** 0.85***
Random test set 0.94*** 0.76*** 0.86*** 0.86***
Test set of abstract words 0.94*** 0.67*** 0.86*** 0.71***
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first way one can achieve control on semantic dimensions. 
The second way rests on the observation that the predictive 
models we have trained show a mapping from word embed-
dings to the emotional norms that is locally linear for all 
norms. This means that, locally, there is a single direction 
associated with a change in valence and this fact may be 
used to find a word whose embedding differs principally 
on this dimension, while being close to all others. By doing 
this, we increase the chance the matched word will be close 
in value on all unaccounted-for dimensions that these direc-
tions describe. This, in turn, decreases the chance that one 
of these outside dimensions may, for example, differentially 
affect reaction times in two conditions of an experiment, 
challenging its internal validity.

The stimuli descent algorithm takes advantage of the 
differentiability of our method to find semantically matched 
words by performing gradient descent in word embedding 
space with respect to the predicted emotional norm. As 
the position in word embedding space encodes informa-
tion about how the word is used and its semantic connec-
tions, words that are close together in this space tend to 
have similar meanings (Stratos et al., 2015). Thus, stimuli 
descent moves down the function from word embeddings 

to norms to find the closest word that differs in this norm, 
allowing for the selection of semantically matched words. 
To do this, the algorithm at each step predicts the norms 
and calculates the gradient of the norm we wish to manipu-
late. As this gradient is the vector in word embedding space 
that points in the direction of the fastest increase in the 
predicted rating, the algorithm moves along this vector to 
find the closest word with the most divergent rating. https://​
colab.​resea​rch.​google.​com/​drive/​1Cjce​jg1Ad​DhsZW​s4Vio​
Q5tT8​B496j​gFZ

Method

We wish to find semantically matched words less or more 
pronounced on the manipulated dimension, for words in a 
set. To simplify the presentation of the algorithm, we will 
assume our manipulated dimension is valence, and we wish 
to match words less positive than those from a set of positive 
words. Apart from the word we must specify the minimum 
difference in ratings we wish to achieve (denoted Δminr ), so 
that the difference (denoted Δr ) between a matched word’s 
valence and the valence of the original word is at least as 

Fig. 2   The effect of word familiarity on prediction performance for concreteness. The y-axis indicates the correlation of prediction and ratings 
estimated from a selection of words that were known by at least the proportion of participants indicated on the x-axis

Table 5   The results of the experimental validation test

* p < 0.05** p < 0.01*** p < 0.001
Original model accuracy relates to the results presented in Study 1. 95% Confidence intervals are presented in square brackets. The 95% con-
fidence interval for the original model is tighter than the precision with which correlations are reported. The “condition” column relates to the 
experimental condition, while the rest of the columns relate to the correlations between the respective emotional norms and their predictions

Condition Origin Imageability Dominance Arousal Valence

Original model accuracy 0.86*** 0.88*** 0.92*** 0.86*** 0.93***
Experimental accuracy 0.84***

[0.73, 0.92]
0.71***
[0.52, 0.82]

0.86***
[0.73, 0.93]

0.83***
[0.68, 0.92]

0.70***
[0.45, 0.89]
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large as Δ
min

r . Now, we must define the loss function with 
respect to which we will perform gradient descent. In this 
instance, it will be the predicted valence rating (with either 
a plus or minus to increase or decrease the rating). We may 
also wish to control other emotional dimensions such as 
arousal. To this end, we may perform a kind of controlled 
gradient descent, where we want to remain at the same level 
of the controlled dimensions at each step. Thus, at each step 
we calculate the prediction of the controlled dimension. The 
gradient of this prediction shows the direction in which the 
prediction of controlled dimensions changes and we may 
use these “controlled gradients” to remove their components 
from the loss gradient, remaining approximately at the same 
level of controlled dimensions.

Last modifications to the algorithm involve accounting for 
the high dimensionality of the space we are moving in. First, 
as words are discrete points in this high-dimensional embed-
ding space, there may not be a word that corresponds to the 
place this procedure has moved us to. Thus, to select new 
stimuli we need to check for approximate matches – words 
that are close in embedding space according to some dis-
tance metric. We chose cosine similarity, a metric typically 
used for comparing embedding similarity. Second, this high 
dimensionality makes it easier to move to regions of word 
embedding space where there are no words. This creates 
the issue that in such regions the network predictions are 
only extrapolations, which could easily be wrong. Thus, we 
add to the loss function a regularization term penalizing the 
algorithm for stepping outside of a multivariate gaussian 
distribution approximating the word occurrence distribution. 
This term is proportional to the logarithm of the Gaussian 
density function and is described in more detail in Appendix 
1 along with other technical details on the objective func-
tion. The complete algorithm is described in Fig. 3.

Figure 3 The stimuli descent algorithm, which finds 
semantically matched words via controlled gradient descent 
in the word embedding space

Results and discussion

For matching words with the stimuli descent algorithm, we 
have trained another transformer model for English, but 
with just one word embedding space, instead of two (with 
embeddings from the BERT model "bertweet-base-emotion-
analysis"; Pérez, 2021). The correlations with human judg-
ments for this model were similar to the ones from Table 2 
and evaluated to be r = 0.95, r = 0.76, r = 0.86, r = 0.85, 
and r = 0.95, respectively for valence, arousal, dominance, 
age of acquisition, and concreteness.

We have looked for semantically matched words for two 
commonly manipulated factors: valence and arousal. While 
looking for similar words that differ in these dimensions, 
we have also instituted controlled variables, such that the 
algorithm was either manipulating valence and controlling 
arousal or manipulating arousal while controlling valence 
and dominance. To start, the algorithm needs a word to 
match the next words to. For each dimension we selected 
approximately 250 words. Since we can choose to either 
decrease or increase the ratings, half of these words were 
high, and half were low on the dimension of interest.

To minimize the risk of bias, the selection of words was 
done based purely on ratings. For the valence manipula-
tion we picked words whose valence ratings were clos-
est to 1 standard deviation above or 1 standard deviation 
below the mean valence rating. Similarly, for arousal, we 
picked words close to 1.5 standard deviation above or below. 
Selected results of these analyses are presented in Table 4. 
All obtained results are available in the following OSF 
repository: https://​osf.​io/​cug92/?​view_​only=​6f246​610bc​
0b43c​c9e98​d7c97​8f2f6​fa Table 6.

Observing results, we see that successful matches some-
times also automatically match words also on more surface 
level features, such as length, or how the word sounds. One 
such example from the supplementary electronic material 

Fig. 3   The description of the stimuli descent algorithm
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is the match “trample” and “scramble”. This is useful as 
such surface-level features have also been shown to influ-
ence behavior in experimental tasks (Hauk & Pulvermüller, 
2004; Kuchinke, et al., 2007; Méndez-Bértolo et al., 2011). 
Matching stimuli with neural networks present an exciting 
direction for methods research that may lead to more robust 
experimental results with word stimuli.

Certain limitations of the method must be noted. First, cer-
tainly not every word has a word of different emotional value 
matching its semantic content. What this means for the method 
is that it can certainly fail to find matching words but will 
nonetheless propose candidate words. Thus, caution needs to 
be exercised when using the algorithm to generate stimuli to 
identify these cases. Some methods can be developed to iden-
tify mismatched words. First, the distance of the word at the 
matching stage can serve as an indicator of the appropriateness 
of the match. This leads to the second limitation of the validity 
of distance measurement in high-dimensional spaces. In higher 
dimensional spaces, the likelihood of finding points diminishes 
exponentially with the number of dimensions. Future work 
may try to address this limitation by picking several candidate 
words using the algorithm and performing the selection pro-
cess with more sophisticated measures of similarity.

General discussion

The present study has shown that a transformers-based archi-
tecture can be useful in predicting a range of affective and 
other word metrics. While the usefulness of transformers for 
such tasks has been widely recognized in machine learning 
(Lin et al., 2022), the full extent of the benefits that these 
methods can bring to the study of human behavior is an open 
area for research. The psychologically interesting conclu-
sions that can be drawn from the high correlation of trans-
former-based norm extrapolation with human judgments can 
provide support to the claim that the distributional properties 

of words in written language hold information about how 
word stimuli are judged in terms of their emotionality by 
participants of psychological studies (Sahlgren, 2008). In 
the end, the numerical representations of words, which we 
use in the training process of our models, are related to how 
words interact with each other in text (through the attention 
mechanism concept introduced by Vaswani et al., 2017). A 
statistical regularity therefore exists between emotion rat-
ings and the structure of human language. The two cognitive 
mechanisms that can be hypothesized to support such statis-
tical regularity are the influence of affective properties on 
the way language is used, and the converse mechanism of the 
patterns in which language is used influencing the affective 
reactions, either directly or through shaping the interpreta-
tion of semantic content (for a discussion of links between 
distributional co-occurrence and emotional dimensions see 
Snefjella & Kuperman, 2016). This is easy to imagine as 
the emotional meaning of words is well associated with 
their semantic meaning (Vankrunkelsven et al., 2015). This 
result, however, does not extend to all words of a language, 
as prediction is limited to words similar to the words used 
in emotional words databases (Snefjella & Blank, 2020).

The possibility of inferring vast amounts of information 
from distributional properties finds support in the natu-
ral language processing literature, tasked with extracting 
meaningful semantic information from text based on the 
co-occurrence of words in large corpora. A common exam-
ple includes the algebraic treatment of vector word-meaning 
representations in word embeddings, using which it is pos-
sible to find the representation of the word ‘man’ by sub-
tracting the representation of ‘royal’ from that of the word 
‘king’ (Ethayarajh, 2019). More novel methods, such as the 
ones used in this paper, may represent an even wider array 
of semantic information, which is evidenced by the impres-
sive semantic capabilities of the most advanced transformer-
based large language models (Sobieszek & Price, 2022), 
which for GPT-3 included translation, summarization and 

Table 6   Words generated using the stimuli descent algorithm

Sample results of semantically matched words. Bold font indicates words that were put to the algorithm, the words in the next two columns have 
been matched by the algorithm. ‘X’ indicates the algorithm did not find any matching words for that level of the manipulated dimension

Manipulation of valence Manipulation of arousal

Low Medium High Low Medium High

Skeleton Fossil Wishbone Pleasant Splendid Glorious
Crass Cheeky Whimsical Villa Condo Mansion
Unscheduled X Surprising Hanger Rake Spikes
Pretentious Contemporary Philosophical Patron Promoter Activist
Intimidate Exceed Impress Willing Attentive Eager
Drain X Fountain Bike X Motorcycle
Subdue Neutralize Alleviate Mule Possum Skunk
Insurance Consumption Income Unintentional Overwhelming Uncontrollable

WORDS, VECTORS, AND FEELINGS 56



4728	 Behavior Research Methods (2024) 56:4716–4731

1 3

the execution of linguistic tasks purely from their descrip-
tion (Brown et al., 2020), which the introduction of GPT-4 
expanded to a vast set of common sense task that seem to 
require some basic understanding of the world (for detailed 
tests, see Bubeck et al., 2023).

These developments point to an increasing role that 
machine learning may play in the conduct of psychological 
studies of language and emotions. A basic use case that the 
high correlations with human judgments could afford is the 
use of extrapolated norms for choosing experimental stimuli. 
While empirical verification of extrapolated norms is always 
advised, it does not render the extrapolation useless. Say one 
was designing a study with an orthogonal design that studies 
the influence of three emotional factors, for example, valence, 
arousal, and dominance, with affective word stimuli. As 
valence is highly correlated with dominance and has a quad-
ratic relationship to arousal (Warriner et al., 2013), it is very 
rare for words to have an emotional load of positive valence, 
low dominance, and low arousal at the same time, but a 
group of such words would be required to construct such an 
orthogonal design. This means that not enough words may be 
present in the available affective norms dataset to construct 
such a design. The issue also arises in simpler designs when 
attempting to control correlated factors. The solution that 
precise norm extrapolation affords is to use its predictions as 
a heuristic tool for picking stimuli to put to human evalua-
tion to balance the existing affective word databases. Using 
existing affective norms, one may predict which words are 
likely to have the unusual emotional load of positive valence, 
low dominance, and low arousal, and verify this prediction 
empirically. In this way, semantic norms extrapolation may 
be used as tools for picking experimental stimuli.

To support this application of the transformer-based norm 
extrapolation proposed in this paper, we developed an algo-
rithm for the selection of stimuli. The algorithm leverages both 
the high correlations with human affective judgments and the 
semantic aspects of words learnt by the network to select words 
that are semantically similar, yet affectively different. The algo-
rithm allows one to manipulate emotional factors while con-
trolling others, but also employs the unsupervised control of 
word meaning that has not yet been explored in the literature 
on affective words. The novelty of the method stems from its 
leveraging of the differentiability of our extrapolation method. 
As the method does not use k-nearest neighbors for extrapola-
tion we can find the gradients of all the predicted norms to 
find the nearest word with different affective ratings, where 
the distance is an auxiliary measure of semantic similarity.

An additional consideration is whether our model may be 
of use in the study of computational models of emotion (Mar-
sella et al., 2010). Firstly, the norms modeled by our network 
are the average of the outcomes of individual emotional pro-
cesses of the participants of the normative study. These pop-
ulation-level estimates, while useful, do not correspond to the 

experiences of any particular person and as such the ability 
to infer from norms to psychological mechanisms is severely 
limited. Currently the use of the model in such a context is 
additionally limited by the general limited understanding of 
how transformer networks make their predictions and as such 
drawing any specific scientific conclusions for cognitive sci-
ence from the trained model should be discouraged.

To avoid scientifically dubious conclusions, the misuse of 
the model may bring, it is necessary to underscore the limi-
tations highlighted in the robustness section, following the 
critique of Snefjella & Blank (2020). Our transformer-based 
extrapolation method, while versatile showing promise in 
dealing with selection bias, does not overcome the limita-
tion posed by out-of-distribution prediction from a sample 
from which norms are missing not at random. To address 
this one should avoid using imputed norms in studies where 
a systematic bias on uncommon words may lead to false 
inferences, such studies which analyze stimuli corpora. If 
one wishes to select as stimuli uncommon words it is neces-
sary to experimentally validate their norms, as there both 
epistemic and aleatoric uncertainties will impact the mod-
el’s performance. As discussed previously, it is generally 
ill-advised to use extrapolated norms of age-of-acquisition 
and any norm of words known by a fraction of people. The 
conclusion of the experimental validation is that one should 
conservatively expect at least a 10% drop in accuracy for 
out-of-distribution words. Consequently, while the model 
may be a valuable tool, its applications should always take 
note of the fact it does not overcome the issues of missing 
data imputation highlighted by Snefjella & Blank (2020). 
The same issues apply to all the norm extrapolation methods 
reported previously as well (Snefjella & Blank, 2020).

Taking advantage of the advances in machine learning is 
important for the broader scientific community, especially con-
sidering the asymmetry in the availability of computational 
resources. Guided by this thought, we have chosen not only to 
share all our code and models, but to implement the methods 
from the paper in an online notebook that allows for their use 
with a simple graphical interface. In this way, the methods 
can be used without the need for coding or access to high-end 
GPUs. We hope that this will maximize the benefits that the 
methods can bring researchers in the psychology of emotion.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​3758/​s13428-​023-​02212-3.
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bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
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High risk of political bias in black 
box emotion inference models
Hubert Plisiecki 1,2,3, Paweł Lenartowicz2, Maria Flakus 3 & Artur Pokropek 3

This paper investigates the presence of political bias in emotion inference models used for sentiment 
analysis (SA). Machine learning models often reflect biases in their training data, impacting the 
validity of their outcomes. While previous research has highlighted gender and race biases, our study 
focuses on political bias—an underexplored, pervasive issue that can skew the interpretation of text 
data across many studies. We audit a Polish sentiment analysis model developed in our lab for bias. 
By analyzing valence predictions for names and sentences involving Polish politicians, we uncovered 
systematic differences influenced by political affiliations. Our findings suggest that annotations by 
human raters propagate political biases into the model’s predictions. To prove it, we pruned the 
training dataset of texts mentioning these politicians and observed a reduction in bias, though not its 
complete elimination. Given the significant implications of political bias in SA, our study emphasizes 
caution in employing these models for social science research. We recommend a critical examination 
of SA results and propose using lexicon-based systems as an ideologically neutral alternative. This 
paper underscores the necessity for ongoing scrutiny and methodological adjustments to ensure the 
reliability of the use of machine learning in academic and applied contexts.

Keywords  Political Bias, Emotion inference models, Sentiment analysis, Social Science Research, Annotator 
Bias

“The bias I’m most nervous about is the bias of the human feedback raters.”
~ Sam Altman, OpenAI CEO.

It is a well-documented fact that machine learning models are prone to being biased by their training data. 
Studies have repeatedly shown the presence of biases against various social groups, including gender and race 
biases, in machine learning-based sentiment analysis (SA) systems—systems that predict the positivity of text 
snippets1–3. These types of biases are significant from a social justice perspective, as they can exacerbate the 
reporting of spurious differences between social groups and affect the interpretation and outcomes of studies 
across various domains.

In this paper, we highlight another critical dimension of bias in SA systems: political bias, or the propagation 
of the political orientation of the annotators through the annotated data to the predictions of the SA model. 
Political bias has the potential to skew the interpretation of data across a wide range of studies, affecting societal 
perceptions and policymaking at a systemic level. Given that nearly every text contains some level of political 
nuance4, this kind of bias can potentially influence many studies that employ SA, especially in the social sciences.

The aim of this research is to show that political bias in SA systems is substantial and pervasive. This bias not 
only intersects with other biases reported so far, such as gender and race biases, but also extends beyond them, 
rendering many research conclusions less reliable. By addressing political bias, we seek to contribute to a more 
comprehensive understanding of biases in SA systems and to encourage the development of mitigation strategies 
that enhance the reliability and fairness of SA applications.

Emotion and sentiment analysis in Social sciences
In recent years, social scientists have increasingly recognized the profound influence of emotions across a 
broad range of disciplines. This interdisciplinary approach has illuminated the significant role emotions play 
in shaping human behavior and societal dynamics in fields such as political science5, sociology6,7, economics8, 
anthropology9, and organizational research10, among others. The proliferation of text data sources—including 
social media, computer-based survey responses, political speeches, newspapers, online forums, customer 
reviews, blogs, and e-books—has provided unprecedented opportunities to examine emotions outside traditional 
psychological laboratory settings. Consequently, various tools have been developed to detect emotions11,12. As a 
result, research in this area has expanded rapidly.
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To provide specific examples, in previous research SA been employed to predict election results13, gauge 
public sentiment toward pressing social issues14and compare the emotional content between news sources from 
different ends of the political spectrum15. During the COVID-19 pandemic, numerous studies analyzed public 
sentiment based on online data16,17leading to conclusions such as describing the crisis communication styles on 
Twitter of different Indian political leaders18. Similar research examined the emotional tone of the Austrian 2016 
presidential election candidates19. From a psychological perspective, SA and emotion prediction have been used 
to assess suicide risk20, automate feedback in online cognitive behavioral therapy21, predict the subjective well-
being of social media users22, and analyze the subjective well-being of people over the past centuries23. All of 
these studies relied on sentiment analysis written text to reach scientific conclusions, showcasing the importance 
of this technique in current social research. However, the exact implementation of SA can vary from study to 
study.

Overall, there exist three main categories of sentiment analysis (SA) systems: (A) dictionary-based approaches, 
(B) large language model (LLM) approaches, and (C) classical supervised predictive model approaches, referred 
to from now on as predictive model approaches for brevity. Dictionary-based approaches (A), also known as 
lexicon-based methods, rely on predefined lists of words associated with specific sentiments. These dictionaries, 
such as the AFINN, SentiWordNet, and LIWC24–26, assign sentiment scores to words and phrases within a text 
to determine its overall sentiment. This method is straightforward and interpretable, but it can be limited by the 
coverage and accuracy of the dictionary, as well as by the inability to capture contextual information.

In contrast, large language model (LLM) approaches (B) leverage advanced neural networks trained on vast 
amounts of text data. Models such as GPT-4, LLAMA, and their derivatives can capture nuanced sentiment by 
understanding the context and relationships between words in a sentence and predict it in a zero-shot (without 
any examples to guide it), or multiple shot manner (with examples). However, their performance in emotion 
detection specifically falls short of the state-of-the-art (SOTA) predictive model approaches (C)27.

The predictive model approach (C) involves training machine learning-based classifiers or regressions on 
labeled datasets. Techniques such as support vector machines, random forests, and deep learning models are 
used to predict sentiment based on features extracted from the text. These approaches are currently considered 
the best for analyzing emotion according to robust tests of prediction accuracy on political text datasets, as well 
as broader domain benchmarks27,28. However, this high accuracy comes at the cost of lower interpretability and, 
as this study will underline, a propensity for bias.

Bias in predictive models
Bias in predictive models originates from the training data, which in the case of sentiment analysis (SA), consists 
of annotated text datasets. These datasets are the result of the laborious work of annotators who read through 
provided materials and assign emotional labels. Annotators can differ on many accounts, including age, gender, 
socio-economic status, psychological individual differences, and political orientation. All these differences can 
impact the annotation process. Studies such as Milkowski and associates29have shown that individual differences 
among annotators can significantly affect emotion annotations in text. These individual differences introduce 
subjectivity into data assumed to be objective, leading to inconsistencies that can skew the training and 
evaluation of models designed to predict emotional reactions from text. Moreover, annotation bias can result 
from a mismatch between authors’ and annotators’ linguistic and social norms, as noted by Sap and colleagues30. 
This mismatch often reflects broader social and demographic differences that can manifest in critical research 
areas like hate speech and abuse detection. For instance, studies by Larimore and associates31, and Waseem32 
show that the race and gender of annotators influence not only the annotation process but also the performance 
of NLP models, further compounding biases.

Particularly concerning is the influence of annotators’ political and ideological biases. This type of bias not 
only includes biases against specific social groups reported in earlier studies, but its generality makes the specific 
extent of its influence on SA models difficult to determine, although we expect it to be significant1–3. Ennser-
Jedenastik and Meyer33report that coders of political texts often incorporate their prior beliefs about political 
parties into their coding decisions. For example, annotators are more likely to perceive a sentence as supporting 
immigration if they believe it comes from a left-wing party, regardless of the actual content. Experimental 
studies by van der Velden34show that personal characteristics of annotators, like political ideology or knowledge, 
interfere with their judgment of political stances. It’s important to note that this interference might not be fully 
realized by the annotator, as previous psychological studies have shown the influence of political orientation 
on implicit judgments35,36. Here of significant importance are the findings that show that people of different 
political orientations differ significantly in many annotation tasks related to political science, including emotion 
annotation of images37. This means that constructing an annotation strategy that eliminates the propagation 
of individual bias to SA models might be problematic. This problem parallels many similar ones in algorithm 
creation, where the human behavior information, on which the model is trained, falls short of the aim of the 
engineered algorithm. In such cases, Morewedge and associates38 recommend auditing the models under 
suspicion by testing them for the presence of bias directly.

Current study
In this study, we conduct a bias audit of an existing Polish sentiment analysis model developed by our lab as 
a part of a different research endeavor39 to determine whether its predicted valence ratings show systematic 
differences based on the party affiliation of a diverse group of politicians from different political parties. We 
predict the valence of the names of the politicians, as well as sentences in which their names are embedded to 
vary based on their political affiliation (the latter were included to analyze both the direct valence towards the 
politicians as well as take into account the usual settings in which such a model would be used, where the name 
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of the politicians would be a part of a specific sentence.) We regress the political affiliation of the politicians onto 
the sentiment readings of the model to see how much variance it can explain. To pinpoint the source of the bias, 
we prune the training set of any mentions of the aforementioned politicians, train a second model, and repeat 
the analysis.

Results
Regression models
The predictive model returns the valence metric as a continuous score scaled to a range from 0 to 100. When 
applied to the 24 names of politicians selected for analysis, the valence scores ranged from 42.3 to 56.6, with an 
average (not weighted) (M) of 49.5 and a standard deviation (not weighted) (SD) of 3.17. To examine potential 
bias in more natural contexts, we estimated valence for names embedded in both neutral and politically charged 
sentences. The mean valence was higher in neutral sentences (M = 54.4) compared to raw names (M = 49.5) 
and lower in politically charged sentences (M = 45.7). Interestingly, the differences in valence among politicians 
(measured by the standard deviation of valence) were larger for neutral sentences (SD = 4.35) compared to raw 
names (SD = 3.17), and smaller for politically charged sentences (SD = 1.29).

Along with the visualization of the differences in predicted valence scores of politicians’ names (See Fig. 
1), we regressed these valence scores, as well as the predicted valence scores for the aforementioned sentences, 
onto the independent variables of interest (Table 1). The fitted models with politicians’ affiliation and gender 
(the reasoning for the inclusion of the gender confounder is driven by analyses explained in the later section 
Confounds) seem to describe the data well, and explain 66.5%, 52% and 66.2% of variance (R²). All of the 
coefficients have the same direction and similar magnitudes in all of the three models (Model 1, 2, and 3). The 
hypothesis of exchangeability of scores55 could be rejected due to low p-values: p = 0.008, p = 0.049 and p = 0.018, 
which implies that the differences in valence are not random.

Confounds
The association of political affiliation and valence was significantly stronger than between valence and the 
confounders. This is evidenced by comparing R² of regression on valence in raw names (Model 1, Table 2.) and 
political affiliation (R² = 0.49), and models with only confounds as independent variables. The model including 
only gender reared R² = 0.109 (statistics that relate to gender should be interpreted carefully since there are only 
2 women in our sample), trust towards Zpolitician achieved R² = 0.195, and the mean valence of mentions in 
which a given politician appeared resulted in R² = 0.175. (These models are available in the Appendix)

To find the model that best describes the data, we compare adjusted R² with different sets of potential 
confounds. Since the model with affiliation and gender as independent variables has the highest adjusted R², this 
set of independent variables is used in other models. (See Table 2.)

The modified model
In the model modified (See Table 3.) by pruning texts containing mentions of our set of politicians, the 
relationships between affiliation and valence decreased significantly, but bias was still present in the model with 
raw names (Model 1., Table 3.) It should be noted that not all mentions affecting the model could be pruned, for 
example, the most mentioned politician is Jarosław Kaczyński, but in the dataset there are tweets mentioning his 
twin brother, Lech Kaczyński, the former president and member of the same party.

Discussion
In the current study we have shown that a supervised model trained on annotations created by expert annotators 
in their domain shows signs of political bias with regards to well-known politicians. The impact of this bias 

Fig. 1.  Predicted valence scores of the names of the politicians. Note: the area of the dots corresponds to the 
weight (the amount of tweets containing the name of a politician). Abbreviations: ZP – Zjednoczona Prawica, 
K – Konfederacja, 3D – Trzecia Droga, KO – Koalicja Obywatelska, Left – Nowa Lewica.

 

Scientific Reports |         (2025) 15:6028 3| https://doi.org/10.1038/s41598-025-86766-6

www.nature.com/scientificreports/

WORDS, VECTORS, AND FEELINGS 63



depends on the analytical context. While using our original model, introducing a politically charged surname 
can alter the sentiment score of single text snippet by up to 6 points on a 1–100 scale or by 0.5 in terms of Cohen’s 
d. Given the effect size, datasets with minimal politically charged content may experience only minor bias issues. 
However, when comparing political groups—as in regression analyses across different political parties—this 
bias becomes systematic. For instance, the difference between groups, when compared to the pooled standard 
deviation, is 5.47 versus 3.53 (Cohen’s d = 1.55) for raw names, or 2.30 versus 1.23 (Cohen’s d = 1.87) for modified 
names. This suggests that bias could be even more pervasive in datasets with greater political content and in 
inter-group analyses.

Interestingly, while the variance in sentiment predictions of raw names, and neutral sentences was higher 
than in the case of political sentences, which most probably relates to the higher level of emotional signal present 
in the latter as the words in political sentences contained more emotionally charged language such as “support”, 
or “against”, the systematicity of the bias present in political sentences counteracted this effect as the regression 
models conducted on each of these conditions explained similar levels of variance (0.665, 0.52, and 0.662 
consecutively). This may suggest that the presence of additional political context in the predicted text could 
prime the model to focus on the political information, thereby making the bias more systematic.

Of note is the fact that this bias was not explained by the publics’ trust towards politicians, indicating that 
it does not reflect the general society’s political preferences, but rather those of a selected nonrepresentative 
group. Similarly, the mean valence of the training data tweets that included the names of the politicians did not 
explain this bias either. This rules out the hypothesis that the bias comes from a systematic difference in valence 
between how the politicians were portrayed in text, or other text-inherent reasons. Another argument against 
the influence of the linguistic bias is the moderate intraclass correlation coefficient (0.6) indicating limited 
agreement between the annotators which further undermines the possibility of the bias being inherent to the 
text of the training dataset, and not to the subjective perception of the text by the annotators.

The modified model, trained on a dataset pruned of texts containing politicians’ names, exhibited significantly 
lower bias than the primary model suggesting that at least a substantial part of the bias can be attributed to the 
annotations made by the annotation team in a causal manner. It, however, does not indicate that pruning the 
names of the politicians eradicates all kinds of biases that political orientation might result in. Additionally, the 
model cannot be fully isolated from the influence of certain mentions that may affect its output. For instance, 
while identifying mentions of Jarosław Kaczyński, snippets related to his twin brother, Lech Kaczyński, might 
be included, potentially influencing the model’s predictions. More indirect sources of bias might also be present. 
Moreover, certain word associations may be embedded in the model’s initial architecture before training for 
emotion detection, and this pre-existing knowledge could interact with the annotations producing harder 
to eradicate bias. Given these limitations, along with broader challenges in practical application, we do not 
recommend pruning as a method for bias mitigation. Furthermore, the instructions given to the annotators, 
which prompted them to estimate the “positivity/negativity that they read in each text” rather than their 
emotional reactions to it, leads us to the conclusion that the bias propagated into the annotated dataset in 
an implicit manner. Instances of such implicit propagation of political orientation have been documented in 
previous psychological research35,36.

Dependent variable: Valence of:

Names only Neutral Sentences Political Sentences

(1) (2) (3)

intercept
45.40*** 48.61*** 43.89***

(0.67) (0.92) (0.26)

3D
5.73** 9.09** 2.72**

(2.37) (3.26) (0.93)

K
6.15* 8.37* 2.56*

(3.1) (4.28) (1.22)

KO
5.83*** 3.71* 2.30**

(1.31) (1.8) (0.51)

Left
3.03 5.46 2.51**

(2.56) (3.53) (1.01)

gender
9.77** 10.10* 1.88

(3.48) (4.8) (1.37)

Observations 22 22 22

R² 0.665 0.52 0.662

Adjusted R² 0.547 0.37 0.556

Residual Std. Error 3.38 (df = 16) 5.21 (df = 16) 1.29 (df = 16)

P-value (permutation) 0.008 0.049 0.018

Table 1.  Regression models – differences in valence. Note: *p < 0.1; **p < 0.05; ***p < 0.01 (t-test). Zjednoczona 
Prawica (ruling party) as intercept, gender: woman = 1, man = 0. K – Konfederacja, 3D – Trzecia Droga, KO – 
Koalicja Obywatelska, Left – Nowa Lewica.
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Dependent variable: Valence of: (modified model)

raw names neutral sentences political sentences

(1) (2) (3)

intercept
49.48*** 53.85*** 45.09***

(0.51) (1.14) (0.34)

3D
3.70* 5.93 0.77

(1.79) (4.00) (1.20)

K
2.69 4.64 0.41

(2.35) (5.26) (1.58)

KO
1.55 0.87 0.75

(0.99) (2.21) (0.66)

Left
0.76 3.38 0.9

(1.94) (4.34) (1.30)

gender
6.47** 7.74 0.77

(2.63) (5.90) (1.77)

Observations 22 22 22

R² 0.421 0.224 0.104

Adjusted R² 0.24 −0.019 −0.176

Residual Std. Error 3.02 (df = 16) 4.87 (df = 16) 1.10 (df = 16)

P-value (permutation) 0.076 0.101 0.202

Table 3.  Regression models – modified model (text pruning). *p < 0.1; **p < 0.05; ***p < 0.01 (t-test). 
Zjednoczona Prawica (ruling party) as intercept, gender: woman = 1, man = 0. K – Konfederacja, 3D – Trzecia 
Droga, KO – Koalicja Obywatelska, Left – Nowa Lewica.

 

Dependent variable: Valence in raw names

(1) (2) (3) (4) (5)

intercept
45.76*** 45.40*** 45.52*** 45.76*** 46.06***

(0.78) (0.67) (0.69) (1.38) (1.43)

3D
5.36* 5.73** 5.55** 5.14 4.67

(2.8) (2.37) (2.39) (3.14) (3.19)

K
5.79 6.15* 5.86* 4.91 4.01

(3.67) (3.1) (3.14) (5.23) (5.35)

KO
5.47*** 5.83*** 5.40*** 5.69*** 5.16***

(1.54) (1.31) (1.41) (1.43) (1.55)

Left
2.67 3.03 3.01 2.71 2.54

(3.03) (2.56) (2.86) (2.85) (2.87)

gender
9.77** 8.72* 9.61** 8.40**

(3.48) (3.71) (3.63) (3.88)

trust
0.71 0.76

(0.8) (0.83)

mentions
0.037 0.055

(0.124) (0.127)

Observations 22 22 22 22 22

R² 0.485 0.655 0.672 0.657 0.676

Adjusted R² 0.364 0.547 0.541 0.52 0.514

Residual Std. Error
3.88 3.38 3.39 3.35 3.31 

(df = 17) (df = 16) (df = 15) (df = 15) (df = 14)

P-value 
(permutation) 0.051 0.008 0.021 0.017 0.039

Table 2.  Regression models – inspecting confounders. *p < 0.1; **p < 0.05; ***p < 0.01 (t-test). Zjednoczona 
Prawica (ruling party) as intercept, gender: woman = 1, man = 0, trust: normalized trust scores, mentions: mean 
valence of annotated text, in which politician was mentions in 0–100 scale. K – Konfederacja, 3D – Trzecia 
Droga, KO – Koalicja Obywatelska, Left – Nowa Lewica.
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The most likely explanation for this effect is that when annotators saw a text mentioning a politician, they 
tended to label it in accordance to their own political orientation. During training, these biased labels were 
treated as ground truth. Consequently, the model learned to attribute any difference in valence between a text 
containing the politician’s name and a similar text without it to the politician’s name itself. Repeated exposure 
to this pattern reinforced a systematic bias. By removing texts containing such biased annotations, we therefore 
reduced this bias.

Because the model was originally created for a separate study, we lack detailed information about each 
annotator’s political orientation, making it impossible to directly correlate their political views with the observed 
bias. Nonetheless, we contacted the annotators post hoc and invited them to complete an anonymous, voluntary 
survey on their political orientation, to which 15 out of the 20 responded. The results, while generally consistent 
with the observed bias, offer only tentative evidence for its propagation, and are therefore presented in the 
appendix.

The existence of political bias in the model has been clearly documented, and so has its causal link to the 
training data. Direct evidence that this bias aligns precisely with the political orientations of individual annotators 
is limited, as we lack complete information about their political preferences. However, this limitation does not 
weaken the conclusion that the model’s bias was learned from the annotation process. First, the bias does not 
reflect society-wide patterns of trust toward these politicians. Second, pruning data that mentioned political 
figures significantly reduced the bias, supporting the idea that the skew originated in annotations. Finally, a 
post-hoc, voluntary survey of annotators—albeit incomplete—revealed trends consistent with the observed bias.

These findings highlight that annotator-based biases can readily transfer to trained models, even when 
instructions direct annotators to judge the text rather than their personal feelings about it. Although the post-hoc 
survey provides only preliminary insight into how annotators’ political leanings might have shaped their labels, 
such information is not strictly necessary to conclude that the model is biased. The most plausible interpretation 
remains that model bias stems from the subjective political perceptions of a subset of annotators, whose labeling 
patterns the model then learned. This means not only that the annotations made by humans can lead to biased 
models, but also raises the very real possibility that their bias might have spread to more concepts in the dataset. 
If people implicitly propagate their political orientation towards social groups1–3 as well as specific politicians as 
proven by the current study, the only thing standing in the way of abstract concepts being affected by the same 
type of bias is the ability of the model to pick up on it.

As language models become more advanced, their understanding of language becomes gradually less reliant 
on specific entities which they pick up from the text as in the case of for example Naive Bayes algorithms40, 
and more reliant on relations between abstract concepts. This is evidenced by the distributed nature of the 
information that large language models and other transformer-reliant architectures use, through the mechanisms 
of attention, to generate their outputs41, as well as by the recent LLM interpretability research showcasing the 
crystallization of abstract concepts within the inner layers of these models42. This means that as models improve, 
the propensity of the models being biased towards specific abstract concepts such as for example anarchism, or 
democracy might increase, given that such bias will be present in the training data, which is likely. Furthermore, 
the inspection of these kinds of distributed, conceptual biases will require new, more complex methods of bias 
detection.

Given the biases that have been already uncovered in SA models, as well as those more abstract that can 
lurk in the shadows, yet unidentified, we discourage the use of such models for research and advise caution in 
interpreting the results of those that have already used them. To stress the kinds of problems their use can lead 
to, let’s go back to the examples of research performed with the use of SA systems. The analysis of the sentiment 
towards social issues might be biased towards the sentiment of the annotator’s team14. Similarly, when comparing 
emotional content of news sources, the same propagation of bias can occur15, directly biasing the conclusions. 
This problem of propagation of bias directly biases studies that apply their SA systems to compare different 
groups of texts in terms of emotionality. When trying to predict something using SA scores, like in the case 
of predicting election results, assessing suicide risk, or subjective wellbeing, the effectiveness of the predictive 
model can be influenced by the beliefs of the annotator group, leading to replication issues13,20,22. At the same 
time, when creating customer facing solutions such as automating feedback in online cognitive behavioral 
therapy one has to consider that annotator biases might lead to people with different political predispositions 
receiving different standards of care, however here the influence is not as clear cut as in earlier cases.

However, some of the studies mentioned in this paper may be less affected by this bias, as many of them 
have relied on lexicon-based SA systems, forgoing the increased accuracy of the predictive models in exchange 
for elevated transparency. As these approaches depend on lists of emotionally loaded words which are not 
ideologically relevant, annotated separately, and without any contexts, they are significantly less susceptible to 
propagating the bias of their annotators. Furthermore, any bias that they do propagate can be clearly read from 
the word annotations themselves, therefore researchers that want to buttress their analysis against specific biases 
can directly check for them within the lexicon and correct them there and then. The same task is orders of 
magnitude more complicated when using black box ML models and becomes even more complicated when the 
bias concerns concepts rather than entities. Lexicons, however, should not by any means be assumed to be bias-
free, but rather less susceptible to carry it, and easier to buttress against it.

The higher accuracy of transformer-based, and other predictive models could be therefore traded in for 
the less accurate, but more bias- safe lexicon-based systems. However, given that the drop in performance 
when using lexicon approaches is quite severe this might not be a preferred solution for some researchers28. 
Additionally, lexicons might exhibit different types of biases – such as those related to lists of words that are not 
representative of their natural language use. They should, therefore, also be used with caution. Future research 
should therefore focus on creating emotion prediction ML models that are more robust to training bias. In the 
case where authors choose to use ML based SA systems anyway, we recommend them to take the possibility of 
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different types of potential biases into consideration when analyzing their results, and if possible, to corroborate 
their results using a lexicon-based system.

The alternative in the form of picking the annotation team so that it is balanced with regards to all of 
the individual differences such as political orientation and others that could influence their annotations is 
problematic as (1) it is as of yet not clear which differences could play a role in the annotation process (2) 
balancing a large number of them would require a very large annotation team which would be very resource 
intensive. Nonetheless in very specific applications where the nature of the bias relevant to a given experiment 
can be directly pinpointed such solutions might be viable.

In conclusion, the current paper shows that supervised models trained on datasets annotated by humans 
are susceptible to showing the same biases as annotators, despite the annotation instructions being phrased 
in a way that should avoid the propagation of such bias. This result should be taken into consideration when 
conducting and interpreting sentiment analysis research in the political science sphere and beyond. We therefore 
recommend the research community to perceive machine learning based sentiment analysis models as biased 
until proven otherwise and consider exploring alternative approaches.

The main limitation of the current study is its focus on a single sentiment analysis model and a specific dataset 
largely composed of political texts in Polish. While these conditions are ideal for exploring political bias within 
the context of Polish politics, the generalizability of the findings cannot be stated with certainty, although should 
be taken into consideration. We recommend the researchers that are in doubt about whether our results extend 
to their models to replicate our findings before using them. Additionally, the sample size of politicians and the 
specific sentences used to assess bias were relatively small, which may limit the robustness of our regression 
analyses. Future research should aim to replicate these findings across diverse datasets, expand the number of 
annotators and the range of their political orientations, and explore the interaction between different types of 
bias in sentiment analysis models. Explorations of the exact mechanisms through which the bias is propagated 
would also be insightful from a psychological perspective, and perhaps could bolster the development of bias-
safe emotion prediction alternatives.

Methods
The prediction model
Model training data
The model has been trained on a training set sampled from a comprehensive database of Polish political texts 
from social media profiles (i.e., YouTube, Twitter, Facebook) of 25 journalists, 25 politicians, and 19 non-
governmental organizations (NGOs). The complete list of the profiles is available in the Appendix. For each 
profile, all available posts from each platform were scraped (going back to the beginning of 2019). In addition, we 
also included texts written by “typical” social media users, i.e., non-professional commentators of social affairs. 
Our data consists of 1,246,337 text snippets (Twitter: 789490 tweets; YouTube: 42252 comments; Facebook: 
414595 posts).

As transformer models have certain limits, i.e., their use imposes limits on length, we implemented two types 
of modification within the initial dataset. First, since texts retrieved from Facebook were longer than the others, 
we have split them into sentences. Second, we deleted all texts that were longer than 280 characters.

The texts were further cleaned from social media artifacts, such as dates scrapped alongside the texts. Next, 
the langdetect43 software was used to filter out text snippets that were not written in Polish. Also, all online links 
and usernames in the texts were replaced with “_link_” and “_user_”, respectively, so that the model does not 
overfit the sources of information nor specific social media users.

Because most texts in the initial dataset were emotionally neutral, we filtered out the neutral texts and 
included only those that had higher emotional content in the final dataset. To filter the neutral snippets, the texts 
were stemmed and subjected to a lexicon analysis44 using lexical norms for valence, arousal, and dominance - 
the three basic components of emotions. The words in each text were summed up in terms of their emotional 
content extracted from the lexical database and averaged to create separate metrics for the three emotional 
dimensions. These metrics were then summed up and used as weights to choose 10,000 most emotionally loaded 
texts for the final training dataset. The proportions of the texts coming from different social media platforms 
reflected the initial proportions of these texts, resulting in 496 YouTube texts, 6105 Twitter texts, and 3399 
Facebook texts, totaling 10,000 texts.

Annotators
The final dataset consisting of 10,000 texts was annotated by 20 expert annotators (age: M = 23.89, SD = 4.10; 
gender: 80% female) with regards to six emotions: happiness, sadness, disgust, fear, anger, and pride, as well as 
to two-dimensional emotional metrics of valence and arousal, using a 5-point Likert scale. All annotators were 
well-versed in Polish political discourse and were students of Psychology (70% of them were graduate students, 
which in the case of Polish academic education denotes people studying 4th and 5th year). Thus, they underwent 
at least elementary training in psychology. Each text was annotated by 5 randomly picked annotators. The inter 
annotator reliability as measured by the intraclass correlation coefficient (ICC(1)) for valence measured 0.60 
indicating moderate reliability45.

Since valence and arousal might not have been familiar to annotators, before the formal annotation process 
began, all annotators were informed about the characteristics of valence and arousal. General annotation 
guidelines were provided to ensure consistency and minimize subjectivity. For the purpose of annotating valence 
of texts, the annotators were given the following instruction:

English translation (An in-depth description of the annotation process is available in the Appendix):
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Go back to the text you just read. Now think about the sign of emotion (positive / negative) and the arousal 
you read in a given text (no arousal / extreme arousal). Rate the text on these emotional dimensions.

Model training
For model training, we have considered two alternative base models: the Trelbert transformer model developed 
by a team at DeepSense46, and the Polish Roberta model47. The encoders of both models were each equipped 
with an additional regression layer with a sigmoid activation function. The models have been trained to predict 
each of the six emotion intensities, as well as valence, and arousal. The maximum number of epochs in each 
training run was set to 100. At each step, we computed the mean correlation of the predicted metrics with their 
actual values on the evaluation batch, and the models with the highest correlations on the evaluation batch were 
saved to avoid overfitting. We used the MSE criterion to compute the loss alongside the AdamW optimizer with 
default hyperparameter values. Both of the base models were then subjected to a Bayesian grid search using the 
WandB platform48 with the following values: dropout − 0; 0.2, 0.4, 0.6; learning rate − 5e-3, 5e-4, 5e-5; weight 
decay − 0.1, 0.3, 0.5; warmup steps − 300, 600, 900. The model which obtained the highest correlation relied 
on the Roberta transformer model and had the following hyperparameters: dropout = 0.6; learning rate = 5e-5; 
weight_decay = 0.3. Its average accuracy on the test set is r = 0.80, and r = 0.87 valence, which is the main metric 
analyzed in the current study as it shows the estimated general positivity of the analyzed text.

Bias testing
Stimuli
As stimuli for testing the bias hypothesis, to limit our arbitrary choice of stimuli, we used the names of 24 
well-known Polish politicians who appeared in the November and October 2023 trust polls49–51. The politicians 
were assigned to 5 political parties/coalitions on the basis of their affiliation or because they were candidates of 
that party/coalition. These parties/coalitions are Zjednoczona Prawica, which is right-wing and was the ruling 
coalition, Trzecia Droga, Koalicja Obywatelska, Nowa Lewica, which were centre-right, centre and left opposition 
respectively. The fifth party was Konfederacja, which was a right to far right opposition. These coalitions cover 
96.25% of the total votes in the November 2023 parliamentary elections52.

The model was used to predict the valence for each of the aforementioned stimuli. While capable of estimating 
the intensity of other affective metrics, the choice of valence is both natural and self-evident: valence, by 
definition, reflects the positive or negative reaction to a stimulus. No other affective metric aligns as directly with 
the binary essence of approve/disapprove evaluations, making valence the most intuitive and robust indicator 
of bias in politically charged contexts. To further examine this, we predicted the valence of politicians’ names in 
isolation, as well as in neutral and politically contextualized sentences, to estimate how their inclusion alters the 
model’s predictions. Details of these stimuli are provided in the appendix.

Corpus modification
To identify the potential source of the model’s bias, we locate the texts in the training set that contain the 
surnames of these politicians. We then manually review these texts to see if they are referring to a particular 
politician. There are 459 of these texts in total, with a range of 71 to 0 and a median of 8.5 per politician. We then 
prune the training set of these texts and train a second model with the same training parameters to estimate the 
degree to which their presence influences the model’s bias. The training set contained 7999 texts before pruning, 
which means that the pruned texts constitute below 6% of its size.

Statistical analyses
To test for the presence of bias, we examine where there are noticeable differences in the valence of politicians’ 
names and where they can be explained by the politicians’ political affiliations. For this purpose, we build several 
regression models. As dependent variables, we use the valence score from the original model, the same score 
from the modified model (trained on the pruned corpus), and the differences in valence between the final and 
the modified model. The models return the valence score as continuous variables ranging from 0 to 1, which we 
chose to then recalculate on a 0–100 scale for better readability.

As independent variables we use the politicians’ affiliation, and potential confounders: their gender, trust 
towards them (from the same trust surveys as the names of politicians) and mean annotated valence of texts 
in which these politicians appear, recalculated to 0–100. We included a trust “score” as a proxy to control for 
the general favourability of each politician, to separate it from nonrepresentative political bias. This allows us 
to account for positive or negative feelings about a politician that may stem from their popularity or personal 
traits rather than political alignment. Additionally, the mean valence of the training dataset snippets with the 
politicians’ names was included to test the possibility that the bias of the model stems from text-inherent sources 
such as biased language. This could mean for example that certain politicians were accompanied by more 
negative language than others, translating to biased training. By incorporating both trust and mean annotated 
valence scores, we aimed to rule out alternative explanations for differences in valence beyond the annotators’ 
political bias.

The trust surveys were decoded as 5-point Likert scales51or 3-point Likert scales49,50. Responses “I don’t 
know” and “difficult to say” were recoded as neutral. For each survey, a normalized score was calculated, and the 
mean of these normalized scores was included in the analysis. Mean annotated valence scores were derived from 
texts that were later pruned, see ‘Corpus Modification’, and recalculated to 0–100 scale.

For the regression models we use the weighted least squares method53, weighted by the number of mentions 
of a given politician. Due to the weighting process, two politicians without any mentions in training data were 
excluded. To test the null hypothesis of lack of correlation between political affiliation and bias in the models, we 
conducted the permutation tests on the observed valence (Manly, 1997) for each model, with 100,000 random 
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assignments. This method guarantees robustness and decent statistical power54. This method could be vulnerable 
to extreme outlier in dependent variables, which is not a problem in this study, due to the categorical or bounded 
character of dependent variables used in this study. The QQ-plots of the model residuals are included in the 
appendix. Due to small sample sizes for affiliations, parametric (assuming normal distributions) confidence 
intervals are calculated.

Data availability
The code and data used in the current study is available at the github repository ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​h​p​l​i​s​i​e​c​k​i​
/​p​o​l​i​t​i​c​a​l​-​m​o​d​e​l​-​b​i​a​s and the https://osf.​io/q8bes/?vi​ew_only=6f24​6610bc0b43c​c9e98d7c978f2f6fa . The base 
model used for the current study is available at https://huggingface.co/hplisiecki/polemo_intensity , while the 
modified model is available at the aforementioned OSF repository.
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Abstract 

 This paper introduces the Semantic Propagation Graph Neural Network (SProp GNN), a 

machine learning sentiment analysis (SA) architecture that relies exclusively on syntactic 

structures and word-level emotional cues to predict emotions in text. By semantically blinding the 

model to information about specific words, it is robust to social biases such as political or gender 

bias that have been plaguing previous machine learning-based SA systems. The SProp GNN shows 

performance superior to lexicon-based alternatives such as VADER (Valence Aware Dictionary 

and Sentiment Reasoner) and EmoAtlas on two different prediction tasks, and across two 

languages. Additionally, it approaches the accuracy of transformer-based models while 

significantly reducing bias in emotion prediction tasks. By offering improved explainability and 

reducing bias, the SProp GNN bridges the methodological gap between interpretable lexicon 

approaches and powerful, yet often opaque, deep learning models, offering a robust tool for fair 

and effective emotion analysis in understanding human behavior through text. 
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Eradicating Social Biases in Sentiment Analysis using Semantic Blinding and Semantic 

Propagation Graph Neural Networks 

 

 The automated assessment of emotional content in textual data, or Sentiment Analysis (SA) 

has revolutionized research across the social sciences, enabling applications such as suicide risk 

prediction from text messages (Glenn et al., 2020), analysis of historical well-being trends (Hills 

et al., 2019), political election forecasting (Ramteke et al., 2016), and monitoring global emotional 

responses during crises like the COVID-19 pandemic (Wang et al., 2022). Thanks to SA 

researchers gained access to an extensive array of authentic data on human emotions, as vast as 

the multitude of texts available on the internet. 

 However, current methods for emotion assessment have notable limitations. Transformer-

based architectures, and other machine learning models — while being recommended for their 

high performance (Widmann & Wich, 2022), are at the same time susceptible to inheriting social 

biases from their training data, including gender, racial, ageist, and political biases (Kiritchenko & 

Mohammad, 2018; Díaz et al., 2018; Plisiecki et al., 2024). For instance, Kiritchenko & 

Mohammad surveyed 219 automatic sentiment analysis systems 75% of which showed signs of 

significant racial and/or gender bias. A more targeted investigation conducted found that a model 

trained on annotated political texts exhibited biases aligned with the political orientation of the 

annotators. Removing bias relevant items from the training data reduced these biases, implying 

that the annotations were their source of origin (Plisiecki et al., 2024). As these findings highlight, 

addressing bias in emotion modeling has become an essential challenge for sentiment analysis 

research. 

 Given that balancing the annotator group in terms of bias is problematic as, aside from the 

labor required to find the right people, there always exists a risk of the existence of a bias that was 

not accounted for. The alternative so far has been the use of simpler models, such as those based 

on lexicons (also called norms or dictionaries), which are long lists of manually selected words 

annotated for their emotional information (Plisiecki et al., 2024). The most basic lexicon 

approaches rely on simply looking up the emotional value of each available word in a text and 

averaging the results. Unfortunately, this approach works well only for very simple texts, as it does 

not consider syntactic information. An example here is negation, which can transform the meaning 

of a word in a sentence but goes unnoticed by simple dictionaries.  

 More complex alternatives rely on hard coded rules to handle syntactic dependencies. 

Examples of such approaches are the VADER (Valence Aware Dictionary and Sentiment 

Reasoner), and EmoAtlas (Hutto & Gilbert, 2014; Semeraro et al., 2023). Both of these techniques 

rely on dictionaries combined with hard-coded rules that were arrived at through examination of 

sentence structures. Rules such as “if the negation is three words away from an emotionally loaded 

term, flip the emotional loading of the term” allow those models to handle negations and other 

semantic structures beyond the reach of normal lexicons. Their performance however rarely 
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approaches that of pretrained transformers and the degree of generalization to languages different 

than English is questionable, due to different syntactic patterns being present in languages further 

away on the language phylogenetic tree. 

The Proposed Solution 

 To provide a better solution, this paper presents the Semantic Propagation Graph Neural 

Network (SProp GNN), a supervised approach that bridges the methodological gap between simple 

lexicon-based methods and complex black-box models providing high performance that is robust 

to training data bias. This approach uses the syntactic relationships within sentences to create 

graphs enhanced with emotion information at the word level. The SProp GNN is then trained on 

these graphs, providing emotion predictions at text level. The risk of bias propagation is reduced 

by purposefully blinding the model to semantic information that it could otherwise overfit. 

 The SProp GNN emotion prediction pipeline can be split into three distinct stages (as seen 

on Figure 1.): 

Stage A – Word Level Emotion Prediction - The emotional value of each word is identified. 

Stage B – Syntactic Graph Creation – The sentence is transformed into a graph that reflects the 

syntactic connections between words.  

Stage C – Semantic Propagation Graph Neural Network – A specialized neural network 

processes these graphs, along with the emotional information of singular words, to predict the 

overall emotional meaning of a text, without relying on the direct knowledge of the words that 

constitute it.  

Figure 1. Steps of the Emotion Prediction Pipeline 
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 The proposed approach of selectively withholding specific semantic information from the 

model can be termed Semantic Blinding. Deliberately limiting the model's access to particular 

semantic details prevents it from associating emotional predictions with specific words or concepts 

that could introduce unwanted biases. By focusing exclusively on syntactic relationships and word-

level emotional cues, semantic blinding ensures that the model’s emotional assessments are free 

from training data biases related to specific groups or subjects. This technique, therefore, enhances 

the model's capacity to generalize across varied text sources without inheriting unintended, 

potentially harmful associations, providing a robust and unbiased tool for emotion prediction. 

Brief Introduction to Graph Neural Networks 

Graphs are mathematical structures used to represent entities (nodes) and their relationships 

(edges), providing a powerful framework for analyzing structured data (Zhou et al., 2020). In the 

context of natural language processing (NLP), a sentence can be represented as a graph where 

words serve as nodes, and edges capture syntactic or semantic relationships, such as dependencies 

between words. Graph Neural Networks (GNNs) extend this framework by applying deep learning 

techniques to graphs, enabling models to learn from the relationships and structures inherent in the 

data. Unlike traditional neural networks, which operate on fixed-size inputs like vectors or grids, 

GNNs analyze the connectivity patterns and features of nodes and edges to perform tasks such as 

classification, prediction, or clustering (Zhou et al., 2020). For example, GNNs have been 

successfully used in applications ranging from molecule property prediction in chemistry to fraud 

detection in financial networks (Motie & Raahemi, 2024; Wieder et al., 2020). They have also 

gained recognition in sentiment analysis applications (for a comprehensive review see Rad et al., 

2023), however since the main aim of previous methods was to maximize the predictive 

performance of their approaches, none of them limited the amount of information that the model 

received, as is done in the case of Semantic Blinding. 

The Contents of the Paper 

 Through comparative experiments, this paper demonstrates that the SProp GNN 

outperforms traditional lexicon-based models as well as lexicon-based alternatives across both 

discrete and dimensional emotion prediction tasks in English and Polish. It closely approaches 

transformer-based model accuracy in both languages, and task types offering a compelling 

alternative to biased black-box models. Furthermore, the paper provides detailed statistical and 

theoretical evidence that the SProp GNN is robust to the biases shown in previous research.  
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Methods 

The Emotion Prediction System 

 The method proposed by the current paper essentially combines the use of three different 

machine learning based approaches, which process the text sequentially. 

Word Level Emotion Prediction 

 The task of the first model is to predict the emotional value of the words in the text. This 

task, also seen as norm-, or lexicon-extrapolation is currently best attempted using transformer-

based models (Plisiecki & Sobieszek, 2023). For the purposes of the current paper, either existing 

pretrained transformers norm extrapolation models are used, or new ones are trained when no off-

the-shelf solutions are available. This stage results in emotion estimates for each separate word in 

a given text. 

Creation of the Syntactic Graph 

 The text is then divided into sentences, and these sentences are analyzed using the spaCy 

package (Ines Montani et al., 2023). This software uses machine learning algorithms and linguistic 

rules to parse text, creating detailed syntactic structures for each sentence. SpaCy generates 

dependency graphs, which represent the relationships between words, as well as dependency labels 

(e.g. negations) and part-of-speech (POS) tags (e.g. verb). If a text consists of multiple sentences, 

these are linked back together using dedicated sentence nodes. This procedure allows the 

framework to capture the structure of each text, providing a type of scaffolding for the SProp GNN 

to propagate word-level emotional information through. This stage results in the creation of a 

syntactic graph, enriched with the information about the part-of-speech categories, and emotions 

from the first stage, at the node level, and dependency labels at the edge level. 

Semantic Propagation Graph Neural Network  

 The final part of the pipeline is the SProp GNN, a neural network model designed to 

propagate emotional information extracted in the first stage of the pipeline, through the graph 

generated in the second stage. SProp GNN can be split into three main components: a custom 

SProp (GNN) layer, an attention pooling mechanism, and linear output layers. 

Custom Graph Neural Network Layer: At the heart of the model is the custom Semantic 

Propagation Layer. This layer operates on the dependency graphs generated by spaCy (Ines 

Montani et al., 2023), where each node represents a word with associated features, and edges 

represent syntactic relationships between words. The Semantic Propagation Layer integrates 

information from the word node features (earlier predicted emotional load, and part-of-speech 

tags) and edge features (such as dependency types) to compute a scaling factor for each of its 

edges. It then propagates the emotional information from word nodes along those edges, scaling 

them accordingly. The hope here is that by doing so, it can model the propagation of emotional 

information through the sentence. 
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Attention Pooling Mechanism: After the graph has been processed by the SProp GNN layer, 

the model employs an attention-based pooling mechanism. This component aggregates the 

information from all nodes in the graph to create a single, fixed-size vector representation of the 

entire text. The attention mechanism assigns different weights to word nodes based on their 

relevance, effectively allowing the model to focus on the most significant words and relationships 

when forming this overall representation.  

Linear Output Layers: The aggregated text representation is then passed through multiple 

linear layers. These layers transform the high-dimensional embedding into a scalar value between 

0 and 1, corresponding to the predicted score for each predicted emotional metric. By having 

separate output layers for each metric, the model can simultaneously make multiple predictions, 

each tailored to the unique aspects of the respective psychological construct. This is different for 

discrete classification, where the layers transform the embedding to a vector of size equal to the 

number of predicted classes. This vector, when transformed, becomes an array of class 

probabilities. 

 The SProp GNN model processes text by first constructing a rich representation of its 

syntactic and semantic structure using the SProp layer. It then distills this information into a 

concise and meaningful summary via attention pooling. Finally, it translates this summary into 

actionable predictions through the linear output layers. Before prediction, this model has to be 

trained on a dataset of texts, with annotated emotional metrics in the form of either emotion 

intensities, or discrete emotion classes. As the model does not have direct access to the words with 

regards to which people exhibit social bias (e.g. certain politicians, gender information etc.), it 

cannot learn the association between them and the biased emotion estimates. Therefore, the biased 

part of an emotion estimate is from its perspective indistinguishable from noise, as it has no 

systematic relationship with the input data. This renders the model blind to the socially sensitive 

features of the input, therefore rendering it agnostic with regards to social biases. For a more 

detailed description of the model architecture see the Technical Appendix. 

Comparative Experiments 

 The SProp model has been tested on three separate datasets, the GoEmotions dataset, the 

EmoBank dataset, and the dataset used in the Plisiecki and colleagues political bias study, referred 

to from now on as the Polish Political Dataset (2024). These datasets cover two languages (Polish 

and English), and two different emotion prediction tasks (categorical, and continuous emotion 

prediction). 

The GoEmotions Dataset 

 The GoEmotions dataset, developed by Google researchers (Demszky et al., 2020), 

consists of around 58,000 English Reddit comments annotated with 28 distinct emotions, totaling 

over 210,000 annotations. Sourced from a Reddit data dump spanning 2005 to early 2019, the 

dataset includes comments from diverse subreddits, balanced by capping comment counts from 
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the most popular communities and sampling evenly across others. Emotion categories were curated 

based on psychological research to represent a broad but non-overlapping range of emotions. Each 

comment received annotations from three English-speaking raters from India, with additional 

raters assigned when agreement was low.  

The EmoBank Dataset 

 The EmoBank dataset, created by Buechel and Hahn (2022), consists of 10,062 English 

sentences from sources like news, blogs, fiction, and letters, annotated along three emotional 

dimensions: Valence, Arousal, and Dominance (VAD). Each sentence was rated by five annotators 

from the crowdsourcing platform CrowdFlower for both writer and reader perspectives on a 5-

point scale, giving insights into both expressed and perceived emotions. In accordance with the 

recommendations of the researchers, the current paper uses the version of the dataset with the 

weighted average of the reader and writer perspective labels provided at their online repository 

(JULIELab/EmoBank, 2017/2024). 

The Polish Political Dataset 

 The Polish Political dataset (Plisiecki et al., 2024) includes 1.25 million Polish social media 

posts from journalists, politicians, NGOs, and general users. The emotionally neutral texts were 

filtered out using lexical norms on valence, arousal, and dominance. The final 10,000 texts were 

annotated by 20 psychology-trained annotators on six emotions (happiness, sadness, anger, 

disgust, fear, and pride) and two dimensions (valence and arousal) using a 5-point scale. Each 

annotator completed five weekly sets of 100 randomly assigned texts, ensuring each text was 

labeled by five raters for reliable coverage and minimizing cognitive fatigue over the five-week 

process. The resulting scores were averaged to create an intensity score for each text – emotion 

pair. 

Dataset Preparation 

 Each of the dataset was first prepared by either calculating the most voted emotion category 

in the case of GoEmotions or normalizing the intensity of annotations to 0 to 1 range in the case 

of the two continuous datasets. Each dataset was then split into the training, evaluation, and test 

subsets in a proportion of 8:1:1, with the exception of the Polish dataset, for which the split dataset 

was taken from the original paper (Plisiecki et al., 2024). For more information about the 

preparation of the datasets and the datasets themselves see the Technical Appendix. 

Comparative Approaches 

 The aforementioned datasets are used to compare the SProp model’s performance to four 

alternative methods. The first three methods rely on lexicons, and as such are resilient to annotator 

bias. In order for the proposed framework to become a preferred alternative to them, it has to 

outperform them on evaluation metrics. The fourth method relies on transformer base models to 

predict emotions. It is added for comparison with high performing, but bias prone, models to better 
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inform researchers’ decision-making. Each of the methods’ performances is calculated on the test 

sets of respective datasets. 

The Lexicon Approach 

 The lexicon approach works by averaging the emotional intensity of words in a given text. 

In the case of the Emobank dataset and the Polish political dataset I average the word ratings of 

previously published transformer-based norm extrapolation models (Plisiecki et al., 2024). In the 

results section I only report the results of averaging after removing stop words, as this method 

attained better results. As the EmoAtlas approach has proven superior to the lexicon approaches 

(Semeraro et al., 2023) in the task of discrete emotion prediction on the GoEmotions dataset, I do 

not report the performance of the lexicon approach for that specific task. 

The Vader Approach 

 VADER (Valence Aware Dictionary and Sentiment Reasoner) is a rule-based model 

designed for sentiment analysis, particularly effective in capturing sentiment from social media 

and informal text. VADER combines a lexicon with rules that account for various intensifiers, 

negations, and punctuation, making it particularly adept at assessing the sentiment intensity 

conveyed in short online texts. VADER assigns polarity scores for positive, neutral, and negative 

sentiment, averaging these scores to produce an overall sentiment value for a given text. This 

approach is only capable of producing valence estimations (Hutto & Gilbert, 2014). 

The EmoAtlas Approach 

 The EmoAtlas utilizes an extensive lexicon-based network to profile emotions by mapping 

syntactic and semantic relationships in text, effectively capturing nuanced emotional cues without 

extensive model training. Using validated emotional lexicons for Plutchik’s eight core emotions in 

conjunction with a spaCy based (Ines Montani et al., 2023) syntactic analysis, it efficiently 

identifies emotional tones in multiple languages. Its rule-based structure enables it to run 

significantly faster than transformer-based models, providing researchers with interpretable 

insights into how emotions are conveyed in text associations (Semeraro et al., 2023). 

The Transformer Approach 

 A base transformer can be finetuned to predict both continuous and categorical emotions. 

Here the roberta-base transformer model developed by Facebook (Liu et al., 2019) is finetuned on 

the two aforementioned English datasets. After a hyperparameter sweep for each dataset, the final 

models were trained on the parameter setup that led to the best performance. For the Polish political 

bias dataset, the performance of the GNN model is compared with a transformer model that was 

finetuned to predict emotions in the original dataset paper (Plisiecki et al., 2024). For a more 

detailed description of the implementation of each of the comparative approaches refer to the 

Technical Appendix. 

Testing for Bias  
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 This section evaluates whether the SProp GNN model mitigates overfitting on biases 

present in the training data. It follows the approach established by Plisiecki et al. (2024) 1, who 

analyzed a transformer-based language model’s predictions of sentiment toward 24 prominent 

Polish politicians. The original study selected politicians based on a public trust survey and tested 

the model’s sentiment responses to three types of text stimuli: (1) the politicians’ names alone, (2) 

politically charged sentences containing these names, and (3) neutral sentences featuring the same 

names. The model’s task was to classify each stimulus as having positive or negative valence. 

 To quantify political bias, Plisiecki et al. (2024) fit linear regression models in which the 

model’s predicted valence was the dependent variable (Y), and the politician’s political affiliation 

(a dummy-coded factor) and gender were predictors (X1: political affiliation, X2: gender). Thus, 

the model took the form: 

𝑌 = β0 + β1(political affiliation) + β2(gender) + ϵ 

 They found that these predictors explained a substantial proportion of the variance in 

valence predictions (52% for neutral sentences, 66% for political sentences, and 67% for names 

alone), indicating significant bias. 

 The current study replicates and extends this approach with the SProp GNN model using 

three complementary methods. The goal is to determine whether SProp GNN exhibits significantly 

less bias than the previous model. 

Approach 1: Replicating the Original Regression Procedure 

 The first approach directly replicates the original regression methodology. The same linear 

regression model is applied: 

𝑌SProp = β0 + β1(political affiliation) + β2(gender) +  ϵ 

 Here, 𝑌SProp represents the valence predictions made by the SProp GNN for each stimulus. 

The null hypothesis (H₀) states that the SProp GNN model does not exhibit bias (i.e., β1 = β2 = 0) 

while the alternative hypothesis (H₁) is that at least one of the bias coefficients is non-zero. 

 To test this, a permutation test on the observed valence predictions is employed. The 

correspondence between stimuli and the predictor values (political affiliation, gender) is randomly 

shuffled 100,000 times and the regression is re-estimated each time. This produces a null 

distribution of test statistics (e.g., F-statistics or sums of squared residuals) (Manly, 1997). If the 

observed statistic falls into the extreme tails of this distribution, the H₀ is rejected with the 

conclusion that the SProp GNN exhibits bias. Non-significant results should be interpreted with 

caution, as it is difficult to ascertain the test’s power precisely. 

 
1 The author thanks Paweł Lenartowicz for help in coming up with the statistical tests required to test the SProp 

model’s bias 
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Approach 2: Assessing Bias Reduction in the SProp Model 

 The second approach aims to determine whether the SProp GNN model reduces bias 

compared to the original model. Instead of testing if bias exists, the test related to whether the 

SProp model’s bias is equivalent to (or less than) that of the original transformer model. 

 First, the SProp GNN predictions are adjusted by removing the estimated bias from the 

original model. To do this, the original model’s estimated bias coefficients are used (β1̂ and β2̂) to 

create adjusted predictions: 

𝑌SProp, adjusted = 𝑌SProp − (β1̂ ⋅ political affiliation + β2̂ ⋅ gender) 

 Next, a regression is performed with the original bias factors as predictors on these adjusted 

scores. If the adjusted SProp predictions still show a significant relationship with the bias factors, 

it means the SProp model retained the same pattern of bias. If the bias factors do not predict the 

adjusted valence (or predict it inversely), it suggests bias has been reduced. 

 The null hypothesis (H₀) for this approach states that the SProp model’s bias is the same as 

the original model’s bias. The alternative hypothesis (H₁) suggests that the SProp model’s bias is 

reduced. This is tested using a one-sided permutation test (100,000 random assignments). A 

statistically significant negative beta coefficient would indicate that the SProp model is inversely 

related to the original bias factor, signifying bias reduction. 

Approach 3: Comparing Differences Between Models 

 The third approach examines the difference in predictions between the transformer model 

and the SProp model. Define the difference in predicted valence as: 

Δ𝑌 = 𝑌SProp − 𝑌transformer 

This difference is then regressed on the original bias factors: 

Δ𝑌 = γ0 + γ1(political affiliation) + γ2(gender) + 𝜖 

 The null hypothesis (H₀) is that the difference in predictions between models is unrelated 

to the bias factors (γ1 = γ2 = 0). The alternative hypothesis (H₁) is that these factors significantly 

predict the difference, confirming that bias is driving the disparities between models. 

 As before, a one-sided permutation test (100,000 random assignments) is conducted to 

determine whether the observed association differs from what would be expected by chance. A 

significant result would indicate that bias plays a key role in differentiating the two models. 

Note on Interpreting the Results 

 While these methods help determine whether the SProp GNN model reduces bias, it is 

important to recognize that errors in the original model’s estimated bias parameters may attenuate 

the observed relationships in the SProp model. Due to such estimation errors, the bias parameters 
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in the new tests are not expected to reach exactly 1 (or to show a perfect elimination of bias). Even 

if no bias were present in the SProp model, random measurement errors and attenuation effects 

may prevent the parameters from perfectly reflecting the removal of bias. 

 

Explainability 

 For the sake of explainability, the SProp GNN saves its scaling factors as well as attention 

weights, allowing the user to understand the type of information on which the model based its 

decisions. As a full analysis of how the model reacts to a large array of diverse sentences is beyond 

the scope of this paper, the focus is shifted to explaining the basic mechanics using two sentences, 

employing an emotional word and a negation: “I am happy” and “I am not happy.” The activity of 

the model is then compared between these sentences. 

This explainability approach is particularly important because it allows users to assess not only the 

model's outputs but also the reasoning behind them. By exposing the scaling factors and attention 

weights, it becomes possible to pinpoint how specific words and their relationships, such as the 

negation in “I am not happy,” influence the emotional predictions. This transparency is crucial in 

ensuring trust and interpretability in sentiment analysis models, especially for applications where 

ethical considerations or fairness are paramount. 

Results 

The GoEmotions Dataset 

 In the task of discrete emotion prediction conducted on the GoEmotions dataset, the 

Semantic Propagation GNN generally outperforms the EmoAtlas approach across the three key 

performance metrics: accuracy, precision, and recall (See Table 1.). Here, accuracy measures how 

often the model's predictions are correct overall, precision assesses the proportion of correct 

positive predictions among all positive predictions made, and recall evaluates the model's ability 

to identify all actual instances of each emotion. The only exceptions are in the precision metric for 

the emotions of anger and disgust, where Emo Atlas slightly exceeds the GNN. 

 While the SProp GNN shows better performance than Emo Atlas, both methods are 

generally surpassed by their transformer-based counterpart. The RoBERTa model, which leverages 

advanced language representations, outperforms both the Emo Atlas and the Semantic Propagation 

GNN across all emotions and metrics. However, the GNN is not far behind RoBERTa, achieving 

a mean accuracy difference of only 5.70 percentage points, compared to a difference of 20.73 

percentage points between RoBERTa and the Emo Atlas. 

 Similarly, for precision, the average difference between RoBERTa and the GNN is 17.05 

percentage points, whereas the difference between RoBERTa and the Emo Atlas is 30.33 

percentage points. In terms of recall, the average difference between RoBERTa and the GNN is 

20.81 percentage points, while the difference between RoBERTa and the Emo Atlas is 48.46 
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percentage points. These results indicate that while the GNN approaches the performance of 

RoBERTa, the Emo Atlas method lags significantly behind in all three metrics. 

Table 1. 

Performance results on the goemotion dataset 

emotion 
Accuracy score % Precision score % Recall score % 

roberta emoa sprop roberta emoa sprop roberta emoa sprop 

anger 91.3 70.0 80.0 86.7 70.1 65.9 87.8 33.8 82.3 

disgust 93.9 66.8 88.9 78.2 73.7 50.7 63.0 19.9 35.1 

fear 94.7 77.3 93.2 71.2 39.6 72.1 85.6 48.2 59.6 

joy 97.3 73.7 92.2 93.0 70.2 76.4 90.7 47.5 77.8 

sadness 94.8 71.6 88.9 81.4 52.3 61.5 80.2 35.5 48.9 

surprise 96.1 84.3 90.7 85.1 7.7 66.7 86.4 18.0 65.1 

Note. The emotion categories had to be limited to those presented in the table both due to lexicon 

availability and EmoAtlas emotion coverage. The results written in bold pinpoint the best 

performance in a given metric out of the two alternatives to transformers. The metric results for 

the EmoAtlas were taken from the original manuscript, which introduced the technique. While 

that means that they were tested on a wider test set, it still provides a good overview of the 

approach performance given that it does not require any finetuning. Model codes: roberta – 

finetuned transformer; emoatlas – the Emo Atlas approach; sprop – Semantic Propagation GNN 

model. 

 

The EmoBank Dataset 

 The task of sentence level emotion prediction was run on the EmoBank dataset, on which 

the SProp GNN outperformed both the lexicon approach and the Vader approach (see Table 2.). 

While RoBERTa achieved higher scores than the SProp GNN, the degree of difference varied 

between predicted metrics. While in the case of valence the difference amounted to 0.13 points, 

for arousal it was as low as 0.02. 

Table 2. 

Performance results on the emobank dataset 

Metric roberta lexicon vader sprop 

Valence 0.75 0.45 0.46 0.62 

Arousal 0.48 0.25 - 0.45 

Note. The results written in bold pinpoint the best performance, measured using the Pearson’s 

correlation, in a given metric out of the three alternatives to transformers. Model codes: roberta 

– finetuned transformer; vader – the Vader approach; lexicon – the lexicon approach; sprop – 

Semantic Propagation GNN model. The lexicon score has been calculated after pruning 

stopwords. 
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The Polish Political Dataset 

 Finally, the Polish political dataset was used to test the model performance on a mixed set 

of both multiple and single sentence texts. Here, the SProp outperformed its lexicon counterpart 

yet again (See Table 3.). Unsurprisingly it was at the same time worse at predicting emotion scores 

than the RoBERTa model by 0.16 points in the case of valence, and 0.13 points in the case of 

arousal. 

Table 3. 

Performance results on the polish political dataset (Pearson’s  Correlation) 

 roberta lexicon sprop 

Valence 0.88 0.57 0.72 

Arousal 0.75 0.33 0.62 

Note. The results written in bold pinpoint the best performance in a given metric, measured using 

the Pearson’s correlation, out of the two alternatives to transformers. Model codes: roberta – 

finetuned transformer; lexicon – the lexicon approach; sprop – Semantic Propagation GNN 

model. The lexicon score has been calculated after pruning stopwords. 

 

Political Bias Results 

Approach 1: Replicating the Original Regression Procedure 

 The replication of regressions performed in the original bias study (Plisiecki et al., 2024) 

yielded no significant results for the SProp GNN model (see Table 4). Neither political affiliation 

nor gender explained any meaningful variance in the model's valence predictions across any of the 

stimuli categories: names, neutral sentences, and political sentences. This outcome contrasts 

sharply with the results obtained for the transformer model in the original study, where political 

affiliation and gender were significant predictors, explaining 66% of the variance in valence for 

political sentences, 52% for neutral sentences, and 67% for names alone. For the SProp model, 

these same predictors explained a negligible proportion of the variance, as shown by the R² values 

of 0.077, 0.135, and 0.103, which are accompanied by non-significant permutation test p-values. 

In Table 4, the results are presented for both models. The regression intercepts represent the 

predicted valence for the reference group, which is Zjednoczona Prawica (the ruling party) and 

male politicians, while the coefficients for political affiliation indicate how much valence changes 

for other groups (e.g., Konfederacja, Koalicja Obywatelska, etc.). For the transformer model, the 

political affiliation coefficients are consistently significant across all stimuli types, confirming 

substantial bias in its predictions. For example, the valence associated with Koalicja Obywatelska 

is consistently higher than that for Zjednoczona Prawica, with coefficients such as 5.83 (neutral 

sentences) and 2.30 (names only), both significant at p < 0.05. Gender also has a notable influence 

in the transformer model, with a coefficient of 9.77 for neutral sentences, indicating that valence 

predictions for women are substantially more positive than for men in this category. 
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In contrast, the SProp GNN model shows no significant coefficients for political affiliation or 

gender in any stimulus category. For instance, the coefficient for Koalicja Obywatelska is close to 

zero (e.g., 0.18 for neutral sentences, 0.93 for names, and 0.60 for political sentences) and 

accompanied by p-values well above 0.05. Similarly, the gender coefficient is 3.19 for neutral 

sentences, 2.11 for political sentences, and while as high as 8.10 for names only, it is not 

statistically significant. These results suggest that the SProp GNN model's predictions are less 

systematically influenced by political affiliation and gender, highlighting a potential reduction in 

bias compared to the transformer model. 

Despite these findings, it is important to interpret the results with caution. While the lack of 

statistical significance in the SProp GNN model suggests an absence of systematic bias, this alone 

does not confirm that the model is entirely unbiased. The low explanatory power of the regressions 

and the non-significant results may also reflect limitations in the sensitivity of the statistical tests 

or the sample size, rather than the true absence of bias. Moreover, differences in residual variance 

and standard errors between the models indicate that additional factors may be influencing the 

outcomes. Therefore, complementary analyses, such as those presented in later sections, are 

essential to provide a more comprehensive understanding of bias reduction in the SProp GNN 

model. 
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Table 4. 

Regression models – differences in valence  

 
Transformer Semantic Propagation GNN 

 
Dependent variable: Valence of: 

 Names 

only 

(1) 

Neutral 

Sentences 

(2) 

Political 

Sentences 

(3) 

Names 

only 

(1) 

Neutral 

Sentences 

(2) 

Political 

Sentences 

(3) 

intercept 
45.40*** 

(0.67) 

48.61*** 

(0.92) 

43.89*** 

(0.26) 

53.59*** 

(1.87) 

55.02*** 

(0.71) 

44.96*** 

(0.49) 

3D 
5.73** 

(2.37) 

9.09** 

(3.26) 

2.72** 

(0.93) 

2.33 

(6.61) 

1.44 

(2.52) 

0.73 

(1.71) 

K 
6.15* 

(3.10) 

8.37* 

(4.28) 

2.56* 

(1.22) 

3.85 

(8.67) 

0.83 

(3.30) 

1.02 

(2.24) 

KO 
5.83*** 

(1.31) 

3.71* 

(1.80) 

2.30** 

(0.51) 

0.93 

(3.66) 

0.18 

(1.39) 

0.60 

(0.94) 

Left 
3.03 

(2.56) 

5.46 

(3.53) 

2.51** 

(1.01) 

-3.75 

(7.17) 

-3.02 

(2.73) 

-1.14 

(1.85) 

gender 
9.77** 

(3.48) 

10.10* 

(4.80) 

1.88 

(1.37) 

8.10 

(9.74) 

3.19 

(3.71) 

2.11 

(2.52) 

Observations 22 22 22 22 22 22 

R² 0.665 0.520 0.662 0.077 0.135 0.103 

Adjusted R² 0.547 0.370 0.556 -0.211 -0.135 -0.178 

Residual Std. 

Error 

3.38 

(df=16) 

5.21 

(df=16) 

1.29 

(df=16) 

6.69 

(df=16) 

2.75 

(df=16) 

1.70 

(df=16) 

P-value 

(permutation) 
0.008*** 0.049** 0.018** 0.885 0.686 0.793 

Note. *p<0.1; **p<0.05; ***p<0.01 (t-test) 

Zjednoczona Prawica (ruling party) as intercept, gender: woman=1, man=0 

Abbreviations: K – Konfederacja, 3D – Trzecia Droga, KO – Koalicja Obywatelska, Left – 

Nowa Lewica 

 

 

 

 

 

 

WORDS, VECTORS, AND FEELINGS 86



Social Bias Free Sentiment Analysis  16 

 

Approach 2: Assessing Bias Reduction in the SProp Model 

 The beta coefficient for bias was β = -0.78, with a permutation p-value significant at p = 

0.012. This result suggests that the SProp model's valence predictions exhibit a substantially lower 

level of bias compared to those of the transformer model. The negative value of the coefficient 

indicates an inverse relationship, suggesting that the bias introduced by political affiliation and 

gender in the original model has been largely mitigated in the SProp GNN model. Given the 

potential for real-world measurement variability and the effects of regression dilution, a coefficient 

of -0.78 strongly implies that the SProp GNN has no significant residual bias from the original 

model, or that any remaining bias is minor and unlikely to have practical significance. 

Table 5 presents the regression results, including the adjusted R² of 0.535, indicating a moderate 

fit for the model. While the dummy variables for sentence types were included to account for 

systematic differences between neutral and political sentences, their specific coefficients are not 

central to the interpretation of bias reduction. The key finding remains that the SProp GNN model 

shows a marked reduction in bias, as evidenced by the negative and significant beta coefficient for 

the bias factor. 

Table 5. 

Regression model - testing for reduction in bias 

 Dependent variable: 

Bias Reduced SProp GNN Valence 

Predictions 

intercept 
53.58*** 

(0.96) 

bias 
-0.78*** 

(0.20) 

neutral Sentences 
-1.07 

(1.21) 

political Sentences 
-8.62*** 

(1.24) 

Observations 66 

R2 0.557 

Adjusted R² 0.535 

Residual Std. Error 
4.04 

(df=62) 

Note. *p<0.1; **p<0.05; ***p<0.01 (t-test) 
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Approach 3: Comparing Differences Between Models 

 The beta coefficient in this analysis explained a significant portion of the variance in 

valence prediction differences between the two models, with β = 0.78 and a permutation p-value 

of p = 0.028. This finding strongly supports the conclusion that the SProp model propagates 

substantially less bias related to political affiliation and gender compared to the transformer model. 

The positive and significant coefficient indicates that the difference in predictions between the two 

models is systematically related to the bias factors identified in the transformer model, further 

highlighting that the SProp GNN effectively reduces the bias originally observed. 

 

Table 6 presents the results of this regression. The intercept (-8.18, p < 0.001) represents the 

baseline difference between the models' predictions, while the bias coefficient (β = 0.78, p < 0.01) 

accounts for a significant portion of the variance. The inclusion of dummy variables for neutral 

and political sentences adjusts for systematic differences across stimulus types. While these 

coefficients (neutral: β = 2.14, p < 0.1; political: β = 7.11, p < 0.001) suggest some variation in the 

magnitude of prediction differences based on sentence type, the primary finding lies in the bias 

coefficient itself, which demonstrates the central role of bias reduction in distinguishing the SProp 

GNN's predictions from those of the transformer model. 

Table 6. 

Regression model – explaining the difference in predictions 

 Dependent variable: 

Difference between Transformer and SProp 

GNN Valence Predictions 

intercept 
-8.18*** 

(0.94) 

bias 
0.78*** 

(0.19) 

neutral Sentences 
2.14* 

(1.19) 

political Sentences 
7.11*** 

(1.21) 

Observations 66 

R2 0.415 

Adjusted R² 0.386 

Residual Std. Error 
4.368 

(df=62) 

Note. *p<0.1; **p<0.05; ***p<0.01 (t-test) 
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The analysis tested three hypotheses to evaluate the bias robustness of the SProp GNN model 

compared to the transformer model. The null hypothesis about the SProp GNN being robust to bias 

was retained, but the results were inconclusive. The second hypothesis, which posited that the 

SProp model's bias is equivalent to the transformer model's, was rejected, showing a significant 

reduction in bias. The third hypothesis, testing whether prediction differences between the models 

are related to bias factors, was also rejected, confirming that the SProp model mitigates the biases 

observed in the transformer model. These results strongly support the conclusion that the SProp 

GNN substantially reduces bias and is a reliable alternative for unbiased sentiment analysis. 

Explainability 

 The SProp model trained on the EmoBank dataset was used to assess the valence of two 

sentences: “I am happy”, and “I am not happy”. The former sentence received a valence prediction 

of 0.68, and the latter, a valence prediction of 0.43 indicating that the model is able to take negation 

into account and appropriately modify its prediction. Figures 2, and 3 depict an abstracted 

representation of what happened inside the model during the prediction. The size of the nodes 

symbolizes the extent to which the model paid attention to them during prediction, and the arrows 

symbolize edges through which the emotional information was propagated. 

Figure 2. The explanatory graph for sentence “I am happy” 
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Note. The size of the nodes represents the degree to which the model attended to a given node’s 

feature when extracting information from the graph. The S Node refers to the sentence node. 

Figure 3. The explanatory graph for sentence “I am not happy” 

 

 It can be seen that in the case of the first sentence (Figure 2), the model relied on the 

emotional information from the sentence node, and the node that contained the emotional features 

of the word “happy”. This is expected as the sentence node contains information passed from all 

of the word nodes in the sentence, while the “happy” node is an adjective, and so often conveys 

emotional information. In the case of the second sentence, however (Figure 3) the model paid 

significantly more attention to the “not” node features, indicating that it learned that negation could 

reverse the emotional load of a sentence.  

 However, as can be seen in Figure 3, the pathway of emotional propagation from the word 

“happy” does not include the negation node. This means that the mechanism through which SProp 

GNN operates is partially based on heuristics, rather than just on the propagation of emotional 

information through the syntactic graph. To test this, a longer sentence including a negation that 

should not modulate the emotional information was processed by the model. The sentence “I am 

happy, and not tall” was given a valence prediction of 0.431, while the same sentence “I am happy, 

and tall” received a rating of 0.69.  
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 The scaling factors used to propagate the emotional information through the syntactic 

graph were not visualized, as they do not convey a lot of information. This is due to their high 

dimensionality. In the current models, the dimension of the scaling factors is equal to the hidden 

dimension of the SProp Layer – 512. This means that their average in all likelihood obscures a lot 

of information about their underlying mechanisms. 

Discussion 

 The present study introduces the Semantic Propagation Graph Neural Network (SProp 

GNN) as a novel approach to emotion prediction, addressing the critical issue of bias propagation 

inherent in machine learning based models. The SProp GNN significantly outperformed other 

lexicon-based alternatives across two different languages—English and Polish—and two distinct 

emotion prediction tasks, namely discrete and dimensional emotion prediction. It’s ability to utilize 

the syntactic structure of sentences embedded with emotional information on the single word level 

allowed it to bridge the gap between simple lexicon-based methods and complex black-box 

models. 

 The main contribution of this work is the demonstrable reduction of bias in emotion 

prediction. Such bias can lead to unfair or discriminatory outcomes, both in real world applications 

such as mental health assessments (Parikh et al., 2019), hiring processes (Kassir et al., 2023), or 

criminal justice systems (Joseph, 2024), as well as in the academia, where scientific conclusions 

are required to be fair and objective. The statistical evidence presented shows that the SProp GNN 

propagates at least significantly less bias than its transformer-based counterpart. This evidence, 

coupled with the sole fact that the SProp GNN simply does not have access to any bias information 

it could overfit, since it only processes the syntactic structure of the sentence coupled with external 

emotional ratings and not words directly, warrants a claim that it is robust to training data bias. By 

effectively mitigating bias, the SProp GNN not only enhances the fairness and ethical standing of 

emotion prediction tools but also increases their reliability across diverse populations. This is 

particularly crucial in a global context where texts may reflect a wide array of cultural, social, and 

individual differences. The ability of the SProp GNN to provide more objective emotional 

assessments can contribute to more equitable decision-making processes in applications that rely 

on sentiment analysis. 

 While the SProp GNN performs slightly worse than pretrained transformers, it constitutes 

a viable alternative in applications where objective emotional assessment is of key importance. 

The development of the SProp GNN highlights the inherent trade-offs between model 

interpretability, performance, and bias mitigation. Transformer-based models often achieve higher 

accuracy due to their ability to capture complex semantic nuances; however, they also tend to act 

as black boxes, making it difficult to understand or control the sources of their predictions, 

including biases. In contrast, the SProp GNN offers a more interpretable architecture allowing for 

greater transparency in how predictions are made. Although there is a slight decrease in 

performance compared to transformers—a mean accuracy difference of 5.70 percentage points on 

WORDS, VECTORS, AND FEELINGS 91



Social Bias Free Sentiment Analysis  21 

 

the GoEmotions dataset, for instance—this trade-off may be acceptable or even preferable in 

contexts where interpretability and bias reduction are prioritized over marginal gains in accuracy. 

This balance underscores the importance of aligning model selection with the specific 

requirements and ethical considerations of the intended application. 

 The bias robustness of the SProp GNN makes it particularly suitable for applications where 

fairness and objectivity are paramount. For instance, in the analysis of social media data for public 

health monitoring (Babu & Kanaga, 2022), using a model that minimizes bias ensures that 

interventions are based on accurate representations of population sentiments without skewing 

toward or against specific groups. In mental health contexts, such as suicide risk prediction from 

text messages (Glenn et al., 2020), unbiased sentiment analysis can lead to more accurate 

assessments and timely interventions. Increasingly popular tools that analyze student feedback 

(Dalipi et al., 2021) can also benefit from unbiased emotion assessments to foster an inclusive 

learning environment. In all these cases and more, the SProp GNN's ability to deliver high-

performance emotion predictions while mitigating bias is of significant practical value. 

Limitations and Future Research 

 The SProp GNN seems susceptible to simplistic heuristics, as shown in the explainability 

section, where the model did not fully capture the nuanced role of negations in complex sentences. 

This potential discrepancy between the good performance results of the model and its inability to 

pick up on syntactic cues that are easily understandable to a human can be explained by the low 

frequency of such sentence structures in the tested datasets and their overall rarity. The datasets 

used are diverse in language and task types, but they may not encompass the full spectrum of 

linguistic structures and expressions found in real-world texts. This could limit the generalizability 

of the SProp GNN to other languages or dialects not represented in the training data. 

 Future studies can further improve the architecture of the SProp GNN, shrinking the gap 

between its performance and that of other potentially biased models. One potential avenue for 

further exploration could be a modification of the syntactic graph creation algorithm. While the 

syntactic pathways extracted using the spaCy package (Ines Montani et al., 2023) provide useful 

information about the structure of sentences, a more tailored model that would map the pathway 

of emotional information propagation directly could achieve even better results, potentially 

reducing the model’s reliance on heuristics. Expanding the training datasets to include more 

syntactically diverse sentences could help the model learn to handle complex linguistic structures 

more effectively. 

 Furthermore, the model's reliance on lexicons, or norm-extrapolation models could 

introduce bias present on the word level. Despite the lack of context when annotating emotions at 

word level, there is still a small possibility that the annotators for the lexicons impacted some sorts 

of biases on the emotion dictionary. This type of bias, however, can usually be easily explored 

using the lexicon in question, and its mitigation is as simple as equalizing the emotional load of 

words that convey it. In circumstances where a specific type of bias could directly impact the 
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conclusions of a study, checking the lexicon for its presence before the use of the SProp GNN is 

advisable. 

Expanding the Concept of Semantic Blinding 

 The proposed approach of selectively withholding specific semantic information from the 

model, termed semantic blinding, is a technique that deliberately limits the model's access to 

particular semantic details. By preventing the model from associating emotional predictions with 

specific words or concepts that could introduce unwanted biases, semantic blinding ensures that 

the model's emotional assessments are free from training data biases related to specific groups or 

subjects. This technique presents exciting opportunities for future research. It could be extended 

to other natural language processing tasks where bias could be a concern, such as text-

classification. Exploring how semantic blinding can be integrated with transformer-based 

architectures might also yield models that combine the high performance of transformers with the 

bias mitigation benefits of the SProp GNN. Additionally, further investigation into the types of 

semantic information that can be withheld without significantly impacting performance could lead 

to the development of more robust and fair NLP models across various domains. 

Practical Considerations for Deployment 

 From a practical standpoint, deploying the SProp GNN in real-world applications offers 

significant advantages in terms of computational efficiency and scalability due to its substantially 

smaller model size when compared to its transformer-based counterparts. Specifically, the SProp 

GNN trained on the EmoBank dataset consists of approximately 1.5 million parameters, while the 

transformer model trained for the same task comprises about 125 million parameters. This 

significant reduction in model size—over 20 times smaller—translates to lower computational 

overhead and faster processing times, making the SProp GNN more suitable for deployment on 

devices with limited resources or for applications requiring real-time analysis. For such 

applications, the word level prediction stage of the model could be done prior to inference time by 

generating a very large emotional dictionary a priori. From an academic standpoint, this translates 

to accessibility for researchers without access to high-performance computing resources. The 

reduced memory and processing requirements mean that the SProp GNN can be trained and 

deployed on standard hardware, broadening the scope of researchers who can experiment with and 

apply this model. This adaptability and efficiency make the SProp GNN a practical and accessible 

alternative to transformer-based models in sentiment analysis tasks. 

 In order to allow other researchers to replicate the analyses presented in the current paper 

and use the SProp GNN architecture for their research, the code, along with detailed comments for 

this paper has been made available at a GitHub repository (https://github.com/hplisiecki/Semantic-

Propagation-GNN). Additionally, the Technical Appendix should serve as additional guide for 

those willing to apply and further develop the methods here presented. 

Conclusion 
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 The SProp GNN represents a significant step forward in developing sentiment analysis 

models that prioritize fairness and interpretability without substantial sacrifices in performance. 

The evidence demonstrates that the SProp GNN not only approaches the accuracy of transformer-

based models but also at least significantly reduces the propagation of biases. This coupled with 

the fact that the model does not possess the ability to overfit specific words points towards near 

total bias eradication. By addressing the critical issue of bias propagation, the SProp GNN offers 

a viable and ethically sound alternative for a wide range of applications. While there is room for 

improvement, particularly in handling complex syntactic structures and expanding language 

coverage, the SProp GNN lays the groundwork for future advancements in unbiased and 

interpretable sentiment analysis. Future work focused on enhancing the model's architecture, 

expanding its applicability, and refining the semantic blinding technique holds the promise of 

further bridging the gap between high performance and bias mitigation in natural language 

processing 
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Technical Appendix 

 This technical appendix provides detailed information on the methodologies, models, datasets, 

and experimental setups used in the paper. It is intended to offer in-depth insights that supplement the 

main text, as well as to serve as a guide for training similar models in the future. 

Detailed Emotion Prediction Pipeline 

The GNN model proposed in the manuscript consists of three stages: 

1. Word level emotion prediction 

2. Syntactic graph creation 

3. The Semantic Propagation GNN (SProp GNN) 

Below each of these stages are described in detail 

Word Level Emotion Prediction 

  The model relies on knowing the emotions of every, or most words in a text, to then propagate 

this information through the syntactic graph and predict emotion on the text level. The paper, in order to 

predict the emotions of words, draws on the literature in norm extrapolation (Plisiecki & Sobieszek, 2023) 

which recommends the use of transformer models for word level emotion prediction. The use of these 

models might not be necessary given a large enough lexicon of words and their respective emotional 

values, and a corpus with restrained vocabulary. However, to ensure proper word coverage already trained 

transformer norm extrapolation models are used, or, in the case of discrete emotion prediction, new ones 

are trained 

 Transformer based norm extrapolation models are trained by adding a regression or a 

classification head to a transformer encoder and training it on an existing norm lexicon. Previous research 

has also added an additional hidden layer between the encoder, and the regression head, with dropout. To 

create one for the task of discrete emotion prediction the NRC Emotion Intensity Lexicon was used 

(Mohammad, 2017) which provides ratings on a scale of 0 to 1 for 5891 unique words for eight emotions 

(anger, anticipation, disgust, fear, joy, sadness, surprise, trust). Not all of the words were rated with 

regards to each emotion, which required training eight separate prediction models for each of the 

emotions. The "nghuyong/ernie-2.0-en" model was used for each of them, as this was the model that was 

also used for valence and arousal prediction in a previous paper and thus can be trusted to model 

emotional information well (Plisiecki & Sobieszek, 2023). The lexicon was split into seven emotion 

specific lexicons, and each of these subcorpora was then further divided into train, evaluation, and test 

sets in the ratio of 8:1:1. Each model was trained for 100 epochs, with a batch size of 500, learning rate of 

5e-5, AdamW optimizer with a weight decay of 0.3 and a linear learning rate schedule with warmup steps 

amounting to 600, a hidden 768 dimensional hidden layer and a dropout of 0.1. Early stopping based on 

the correlation of predicted scores with the ground truth on the validation set was implemented to prevent 

overfitting. The test set correlations for each of the emotions are presented in Table 1. 
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Table 1. 

 

Discrete Emotion Norm Extrapolation Model Performance (Pearson’s Correlations) 

Emotion Anger Anticipation Disgust Fear Joy Sadness Surprise Trust 

Correlation 0.77*** 0.68*** 0.73*** 0.74*** 0.71*** 0.71*** 0.81*** 0.72*** 

* p < 0.6, ** p < 0.1, *** p < 0.001 

 

The performance metrics of already existing valence and arousal models for Polish and English taken 

from Plisiecki and Sobieszek (2023) are reported in Table 2. 

Table 2. 

 

Continuous Norm Extrapolation Model Performance for Polish and English (Pearson’s Correlatrions) 

Language English Polish 

Valence 0.95*** 0.93*** 

Arousal 0.76*** 0.86*** 

* p < 0.6, ** p < 0.1, *** p < 0.001 

 

 In the pipeline these models were used to assess the emotional value of all words that weren’t 

stop words, punctuations, or negations, as assessed by the spaCy package (Ines Montani et al., 2023). To 

improve the compute time of the emotion prediction pipeline, using similar models to create a very big 

lexicon prior to inference can be an option. 

Syntactic Graph Creation 

 The current pipeline uses the spaCy package (Ines Montani et al., 2023) to split the text into 

sentences, and words, followed by an analysis of syntactic dependencies. Each word is connected to the 

other words it relates to syntactically. For example, in the sentence "I do not feel well," spaCy identifies 

"feel" as the main verb, with "I" as its subject and "well" as its modifier. Additionally, the negation "not" 

is linked to "feel," indicating a negative sentiment in the phrase. This information can be represented in a 

graph form where nodes are words, and edges are syntactic dependencies. Each word is furthermore 

assigned to a specific part-of-speech category (e.g., PRON (pronoun) for "I" and VERB (verb) for "feel") 

and each dependency labeled accordingly (e.g., nsubj (nominal subject) for "I" as the subject of "feel" and 

neg (negation) for "not" modifying "feel"). 

 All of punctuation marks are removed from the text, prior to the construction of the graph, apart 

for the ellipsis, exclamation, and question marks ('…', '! ', '? ') which were retained as they play a big role 

in the modulation of text meaning. While spaCy recognizes only around 20 part of speech tags, its 

taxonomy for dependency types is much larger. For this reason, they have been recategorized to a more 

manageable taxonomy of 15 separate categories with entries like "Descriptive Modifiers of Verbs", or 

"Negations". The full mapping is available on the paper’s github repository 

(https://github.com/hplisiecki/Semantic-Propagation-GNN). 

 The resulting structure is a graph where the nodes (words) are assigned feature vectors with the 

emotion ratings predicted at the word level emotion prediction stage, along with a number signifying their 

position in the sentence (word index divided by the number of words in the sentence). Words are also 
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assigned parts of speech indexes signifying their parts of speech categorization. Finally, each of the edges 

(connections) within the graph gets assigned their dependency indexes, relating to the dependency type 

taxonomy. 

 In order to model not only single sentences but also multiple sentences texts, all words from a 

sentence are additionally to an additional sentence node. When a text has more than one sentence, the 

sentence nodes relating to each sentence get connected to each other sequentially in the order they appear 

in text. These sentence nodes are “empty” in the sense that they are not assigned any emotional 

information. Instead, their emotion node features are initialized at zero, allowing the graph to propagate 

the emotion from words into them at inference. Their node features also contain their sentence number 

indicator (sentence index divided by the number of sentences in the text). Finally, they are also assigned a 

unique parts of speech category (the same for every sentence), with their edges having a unique 

dependency category (the same for every sentence). 

 

Semantic Propagation Graph Neural Network 

 The SPROP GNN rests on the idea of allowing the model to propagate semantic information, in 

the form of word sentiment scores throughout the syntactic graph as part of the inference. It is able to do 

it thanks to the custom SPROPConv layer which considers information about the parts of speech each of 

the two words (nodes) connected in the graph belong to, the emotional information of the receiving node 

as well as the type of syntactic dependency (edge) between them. 

 Below is a general overview of the steps that the model performs, followed by a more formal 

explanation of how the SPROPConv layer works, and a short description of the rest of the model’s 

architecture. Because this paper introduces the SPROPConv layer, much attention is paid to its 

description. Afterwards, the training setup is described. 

General Steps Performed by the SPROP GNN 

1. Process Syntactic Graph with SPropConv Layer: 

The model processes the syntactic graph of the text using the custom SPropConv layer, enriching 

each word’s representation with information from related words based on their grammatical 

structure and roles. 

2. Concatenate with POS Embeddings: 

Each word’s updated features are combined with its part-of-speech (POS) embedding, adding 

grammatical context to each word’s representation within the graph. 

3. Apply Attention Pooling: 

The concatenated embeddings are passed to an attention pooling layer, which identifies and 

weighs the most relevant words in the graph for predicting the text’s emotional tone. These 

weighted embeddings are then aggregated using a global addition pool to create a cohesive text 

representation. 

4. Pass Through Fully Connected Layers: 

WORDS, VECTORS, AND FEELINGS 100



Social Bias Free Sentiment Analysis  30 

 

The pooled text representation is further processed through fully connected layers. These layers 

refine and adjust the representation to reach the dimensionality needed for the final prediction. 

5. Generate Final Prediction: 

For continuous emotional metrics, the output layer uses sigmoid activation to predict values 

between 0 and 1 for each metric. For discrete emotion categories, a softmax activation generates 

probabilities across categories, identifying the most likely emotion. 

  

Mathematical Formulation of the SPropConv Layer 

 The SProp layer operates through a series of steps that involve transforming node features, 

computing messages between nodes, and updating node representations. 

 1. Node Feature Transformation 

 Each word in the sentence is initially represented by a feature vector which consists of the 

emotional score of each word, alongside its index sentence divided by sentence length. These features are 

transformed to a hidden representation using a linear transformation: 

ℎ𝑖 = 𝑊𝑥𝑥𝑖 + 𝑏𝑥 

• ℎ𝑖: Hidden representation of node iii. 

• 𝑊𝑥, 𝑏𝑥: Learnable parameters (weights and biases).  

 

2. Message Passing 

 For each edge from node 𝑗 to node 𝑖 (representing a syntactic dependency), the model computes a 

message that incorporates: 

• The hidden representation of the source node ℎ𝑗 

• The embeddings of the POS tags for both nodes: 𝑡𝑖  for node 𝒊 and 𝑡𝑗  for node 𝒋. 

• The embedding of the edge type (syntactic dependency) 𝑠𝑖𝑗 

 These components are concatenated and passed through a linear transformation followed by a 

hyperbolic tangent activation (tanh) to compute a scaling factor 𝑠𝑖𝑗 

𝒔𝒊𝒋 = 𝐭𝐚𝐧𝐡(𝑾𝒔[𝒉𝒋; 𝒕𝒊; 𝒕𝒋; 𝒆𝒊𝒋] + 𝒃𝒔) 

• [⋅;⋅] : Concatenation operation. 

• 𝑊𝑠 , 𝑏𝑠: Learnable parameters. 

 

 3. Message Computation 
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 The message from node 𝒋 to node 𝒊 is calculated by scaling the hidden representation of node 𝒋 

with the scaling factor 𝑠𝑖𝑗: 

𝑚𝑖𝑗 = 𝒔𝒊𝒋 ⋅ ℎ𝑗 

 This step allows the model to modulate the influence of node 𝒋 on node 𝒊 based on their syntactic 

and semantic relationship. 

 4. Aggregation 

 For each node 𝒊, the incoming messages from all its neighboring nodes are aggregated using 

summation: 

𝑎𝑖 = ∑ 𝑚𝑖𝑗

𝑗∈𝒩(𝑖)

 

 

• 𝒩(𝑖): Set of neighboring nodes of node iii. 

 5. Update 

 The node's hidden representation is updated by combining its original hidden state with the 

aggregated messages, followed by a rectified linear unit (ReLU) activation: 

ℎ𝑖
′ = ReLU(ℎ𝑖 + 𝑎𝑖) 

 

• ℎ𝑖
′: Updated hidden representation of node iii. 

The Remaining Architecture 

 After the syntactic graph has been processed using the SPropConv layer, the model concatenates 

the graph’s matrix representation with the parts-of-speech embeddings for each word in the syntactic 

graph. This concatenated embedding is then passed to an attention pooling layer, which identifies the 

words in the graph that contain the most relevant information for predicting the text's emotional tone, 

assigns them weights, and aggregates these embeddings using a global addition pool.  

 This representation is then passed through fully connected layers that gradually bring them to the 

dimensionality required by the prediction. In the case of continuous emotional metrics, this means one 

output dimension per predicted metric, with a sigmoid activation applied to scale the output between 0 

and 1. For discrete emotion prediction, the final layer instead uses a softmax activation, outputting 

probabilities across predefined emotion categories. 

Specific Architectures and Training Setup 

 The three SProp GNN models trained on the three datasets GoEmotions, EmoBank, and the 

Polish Political Dataset share a similar architecture. Each model contains a single SProp layer with 512 

hidden dimensions, alongside embedding layers for both parts of speech (node types) and dependency 

relationships (edge types), with dimensions matching those of the SProp layer. This is followed by a 
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global attention mechanism, which applies a gated attention layer configured with two linear 

transformations (1024 to 256, and 256 to 1) and a ReLU activation in between. The attention weights are 

computed by applying softmax across nodes within each graph, and graph-level features are subsequently 

aggregated using a global addition pool. 

 The differences between the models lie in the final sequence of linear layers. In the case of 

discrete predictions, these layers have the form of three linear transformations (1024 to 1024, 1024 to 

512, and 512, to the number of discrete emotions), separated by dropout and relu activations. 

Alternatively, in the case of the two continuous metric prediction models there are only two linear layers 

(1024 to 100, and 100 to 1), also separated by a dropout and a relu activation. These differences stem 

from free experimentation with different amount of final linear layers. A systematic exploration of 

alternative architectural setups is beyond the scope of this study. 

 The hyperparameters for the three SProp GNN models were chosen using a Bayesian 

hyperparameter sweep on the wandb platform (Wandb/Wandb, 2017/2024). The hyperparameter options 

for the three models were the same: dropout - 0, 0.2, 0.4, 0.6; learning rate - 5e-3, 5e-4, 5e-5, and weight 

decay - 5e-3, 5e-4, 5e-5. All models were trained using the AdamW optimizer with the epsilon equal to 

1e-6 and betas equal to 0.9, and 0.999. The discrete model used the cross-entropy loss, while the 

continuous metric prediction models used the mean squared error loss. The final models were trained 

using the best performing parameters from the sweeps. 

Comparative Experiments 

 This section will outline the data wrangling performed on the datasets that were used to compare 

the SProp GNN with other methods, along with the explanation of how each of the alternative methods 

were implemented. 

Data Wrangling 

 Each of the datasets was processed for the task of using them to compare alternative approaches 

to emotion prediction. Considerable attention was paid to the description of the Polish political dataset as 

it is a far less known dataset when compared to the other two. 

The Goemotions Dataset 

 The goemotions dataset was developed by a team at Google (Demszky et al., 2020). It consists of 

57565 unique texts and 210622 annotations. Each comment received annotations from three English-

speaking raters from India, with additional raters assigned when agreement was low. The most voted for 

emotion per each text was computed and those texts for which two emotions were assigned the same 

number of votes were dropped. This resulted in a dataset of 47136 unique texts. From these texts, those 

that were assigned one of the following emotions: anger, disgust, fear, joy, surprise; were retained leaving 

4819 unique texts. The choice of emotions was dictated by the availability of emotion norms in the NRC 

Emotion Intensity Lexicon (Mohammad, 2017). This dataset was then split into the training, evaluation, 

and test sets in the proportion of 8:1:1. 

The Emobank Dataset 

 The EmoBank dataset, created by Buechel and Hahn (2022), consists of 10,062 English sentences 

from sources like news, blogs, fiction, and letters, annotated along three emotional dimensions: Valence, 

WORDS, VECTORS, AND FEELINGS 103



Social Bias Free Sentiment Analysis  33 

 

Arousal, and Dominance (VAD). Each sentence was rated by multiple annotators from the crowdsourcing 

platform CrowdFlower for both writer and reader perspectives, giving insights into both expressed and 

perceived emotions. Each sentence was annotated by 5 annotators. In accordance with the 

recommendations of the researchers, the dataset with the weighted average of the reader and writer 

perspective labels provided at their online repository was used for training (JULIELab/EmoBank, 

2017/2024). The ratings for valence and arousal were normalized to a 0 to 1 range by subtracting the 

lowest score and dividing by the number of Likert scoring options prior to splitting into the training, 

evaluation, and test sets in the proportion of 8:1:1. 

The Polish Political Dataset 

 The Polish Political dataset (Plisiecki et al., 2024) was created by sampling text data from social 

media profiles of Polish journalists, politicians, and non-governmental organizations (NGOs) across 

YouTube, Twitter, and Facebook. Posts from 2019 onward were collected for 69 profiles. A total of 

1,246,337 text snippets were gathered, with breakdowns of 789,490 tweets, 42,252 YouTube comments, 

and 414,595 Facebook posts. To handle the varying text lengths, Facebook posts were split into sentences, 

and only texts under 280 characters were retained. Social media artifacts, such as dates and extraneous 

links, were removed, and non-Polish texts were filtered using language detection software. To prevent 

overfitting, online links and usernames were standardized as "link" and "user." 

 To create a dataset with richer emotional content, neutral texts were filtered out, leaving only 

those with higher levels of emotional valence, arousal, and dominance. This selection process used a 

lexicon-based approach, where each text was assessed for emotional intensity across these dimensions, 

resulting in 8,000 emotionally charged texts. An additional 2,000 neutral texts were included to balance 

the dataset, preserving original platform proportions. The final 10,000-text dataset, comprising 496 

YouTube comments, 6,105 tweets, and 3,399 Facebook texts, was then annotated by 20 psychology 

students well-versed in Polish political discourse. Each text was rated by five randomly assigned 

annotators on six emotions (happiness, sadness, disgust, fear, anger, and pride) and two emotional 

dimensions (valence and arousal), using a 5-point Likert scale. Before formal annotation, annotators 

received an introduction to valence and arousal, and comprehensive guidelines were provided to ensure 

consistency. For clarity, the annotators received the following English instruction for evaluating valence 

and arousal: 

"Go back to the text you just read. Now think about the sign of emotion (positive / negative) and the 

arousal you read in a given text (no arousal / extreme arousal). Rate the text on these emotional 

dimensions." 

 This instruction was designed to provide a standardized understanding of emotional dimensions, 

ensuring alignment in annotators' assessments across the dataset. 

 For the purposes of the current experiment, all of the emoticons and symbols were filtered out 

and the dataset was split into the training, evaluation, and test sets in 8:1:1 proportion. 

Comparative Approaches 

 This section outlines the details of how each of the alternative approaches was set up and trained 

for performance comparison. 
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The Lexicon Approach 

 For the lexicon analysis of the EmoBank, and the Polish Political dataset I utilize the norm 

extrapolation transformer-based models for Polish and English described in the “Word Level Emotion 

Prediction” section above. Each test set text was first split into words using the spacy package (Ines 

Montani et al., 2023). Each word that wasn’t a stop word was then fed into the norm extrapolation model, 

and the emotional prediction was averaged to get the text level emotion score. 

The Vader Approach 

 VADER (Valence Aware Dictionary and Sentiment Reasoner) is a rule-based model designed for 

sentiment analysis, particularly effective in capturing sentiment from social media and informal text. I 

have used the 3.3.2 version of the Vader package to get the valence/positivity scores for the Emobank test 

set. 

The EmoAtlas Approach 

 The EmoAtlas utilizes an extensive lexicon-based network to profile emotions by mapping 

syntactic and semantic relationships in text, effectively capturing nuanced emotional cues without 

extensive model training. The EmoAtlas performance results for the goemotion dataset were taken 

directly from the original paper (Semeraro et al., 2023). 

The Transformer Approach 

 For the Goemotion and EmoBank datasets the roberta-base transformer model developed by 

Facebook was finetuned on the two English datasets (Liu et al., 2019). A fully connected layer, with the 

dimensions equal to 768 was added on the top of the base model with dropout and a layer norm, with 

either a regression head for the sake of predicting valence and arousal, or a classification head for 

predicting discrete emotions. A Bayesian hyperparameter sweep was performed using the wandb platform 

(Wandb/Wandb, 2017/2024) for both models with 20 runs and the following hyperparameter options: 

dropout – 0.0, 0.2, 0.4, 0.6; learning rate – 5e-4, 5e-5, 5e-6; weight decay – 0.0, 0.2, 0.4, 0.6; and warmup 

steps – 300, 600, 900. Both models use the AdamW optimizer for training with the epsilon equal to 1e-6 

and betas equal to 0.9, and 0.999, alongside the linear learning rate scheduler with warmup. In the case of 

discrete prediction, cross-entropy loss was used, while in the case of continuous emotion metric 

prediction mean squared error loss was chosen. Finally, the final models have been trained using the best 

performing hyperparameters from the sweep. The performance of each of the models is reported in the 

results section of the main manuscript. The training code for these models can be found in the following 

Google Collab: 

https://colab.research.google.com/drive/1pA3oBbHg0pza1yF5kyuddK36-RGKtHxo?usp=sharing 
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